Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050038-5    https://doi.org/10.11896/cldb.22050038
  宇航材料 |
聚对苯撑苯并二噁唑纤维的电子束辐照效应研究
王芳1, 吴亚东2, 琚丹丹1, 吴宜勇1, 孙承月1,*
1 哈尔滨工业大学环境科学与物质研究院,哈尔滨 150001
2 哈尔滨工业大学化工与化学学院,哈尔滨 150001
Research on Electron Beam Irradiation Effect of Poly(p-phenylene benzobisoxazole) Fiber
WANG Fang1, WU Yadong2, JU Dandan1, WU Yiyong1, SUN Chengyue1,*
1 Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China
2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 3109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚对苯撑苯并二噁唑(PBO)纤维具有高比强度、高比模量、耐高温、抗阻燃、轻质等特性,被誉为“21世纪超性能纤维”,产品应用前景十分广阔,尤其是在航空航天领域。考虑到带电粒子辐照对航天材料造成的损伤可能会导致高聚物性能下降,且目前对PBO性能损伤的研究主要集中于紫外辐照方向,本工作开展了电子辐照对PBO纤维的损伤行为研究,通过模拟计算选取辐照剂量,并获得不同注量辐照下的纤维样品。电子扫描显微镜(SEM)、全反射红外光谱(FTIR)、X射线衍射(XRD)等测试结果表明,受电子辐照影响,PBO纤维表面受到刻蚀,结晶性能改变。力学性能测试表明PBO纤维经过电子辐照后强度下降。相关结果显示,空间带电粒子辐照对PBO纤维有明显的活化作用,可使其性能变化,为下一步扩展其应用提供一定的理论基础与参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王芳
吴亚东
琚丹丹
吴宜勇
孙承月
关键词:  深空探测  电子辐照  PBO纤维    
Abstract: PBO fiber has the characteristics of high specific strength, high specific modulus, high temperature resistance, flame resistance and light weight. It is known as ‘super performance fiber in the 21st century'. The application prospect of PBO fiber is very broad, especially in the field of aerospace. Considering the damage of aerospace materials caused by charged particle irradiation, which may lead to the decline of polymer properties, the research on the performance damage of PBO mainly focuses on the direction of UV irradiation at present. Based on this, the damage behavior of PBO fiber induced by electron irradiation was studied. The irradiation dose was selected through simulation calculation, and the fiber samples irradiated with different fluences were obtained. The results of SEM, FTIR and XRD show that the surface of PBO fiber was etched and the crystallization properties changed with the progress of electron irradiation. The mechanical properties test show that the strength of PBO fiber decreased after electron irradiation. The relevant results show that space charged particle irradiation can significantly activate PBO fiber and change its properties, which provides a certain theoretical basis and reference value for expanding its application in the next step.
Key words:  deep space exploration    electron irradiation    PBO fiber
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB324  
基金资助: 国家自然科学基金(52103078)
通讯作者:  * sunchengyue@163.com   
作者简介:  王芳,2018年10月于哈尔滨工业大学获得博士学位。目前主要研究领域为高性能纤维复合材料在深空探测中的应用。发表SCI论文12篇,获得授权专利9项。
孙承月,哈尔滨工业大学空间环境与物质科学研究院副研究员。2005年7月辽宁大学物理系本科毕业, 2007年哈尔滨工业大学材料科学与工程学院硕士毕业,2012年哈尔滨工业大学材料科学与工程学院博士毕业。2012年到哈尔滨工业大学工作至今,目前主要从事材料空间环境效应、空间环境模拟、低维聚合物空间环境效应等方面的研究,发表论文30篇,其中SCI论文29篇。
引用本文:    
王芳, 吴亚东, 琚丹丹, 吴宜勇, 孙承月. 聚对苯撑苯并二噁唑纤维的电子束辐照效应研究[J]. 材料导报, 2022, 36(22): 22050038-5.
WANG Fang, WU Yadong, JU Dandan, WU Yiyong, SUN Chengyue. Research on Electron Beam Irradiation Effect of Poly(p-phenylene benzobisoxazole) Fiber. Materials Reports, 2022, 36(22): 22050038-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050038  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050038
1 Ma C J, Ning R C, Li L, et al. Acta Materiae Compositae Sinica, 2005, 22(3), 16(in Chinese).
马春杰, 宁荣昌, 李琳, 等.复合材料学报, 2005, 22(3), 16.
2 Du J S, Zhang T, Zhao L L, et al. Journal of Inorganic Materials, 2012, 27(11), 1197.
3 Gordo P, Frederico T, Melicio R, et al. Applied Sciences-Basel, 2021, 11(3), 1.
4 Duzellier S, Gordo P, Melicio R, et al. Acta Astronautica, 2022, 192, 258.
5 Bartunek V, Perez-Diaz J L, Hlasek T, et al. Ceramics International, 2020, 46(10), 15400.
6 Song B, Meng L H, Huang Y D. Applied Surface Science, 2012, 258(24), 10154.
7 Chen L, Wang C F, Wu Z J, et al. Polymer Degradation and Stability, 2016, 133, 275.
8 Vallabh R, Hassanin A H, Said M A, et al. Journal of the Textile Institute, 2016, 107(1), 136.
9 Wang Q W, Yoon K H, Min B G. Fibers and Polymers,2015,16(1),1.
10 Lu K Y, Ge X, Wei Z H, et al. Polymers Composites, 2021, 42(4), 2122.
11 Zhang T, Jin J H, Yang S L, et al. Acta Chimica Sinica, 2010, 68(2), 199.
12 Hu Z, Lu F, Liu Y Y, et al. ACS Applied Materials and Interfaces, 2018, 10(49), 43262.
13 Walsh P J, Hu X B, Cunniff P, et al. Journal of Applied Polymer Science, 2006, 102(4), 3517.
14 Walsh P J, Hu X B, Cunniff P, et al. Journal of Applied Polymer Science, 2006, 102(4), 3819.
15 Wang N, Xia Z P, Wang L, et al. China Textile Leader, 2021(5), 54(in Chinese).
王宁, 夏兆鹏, 王亮, 等. 纺织导报, 2021(5), 54.
16 Liu S R, Zhang M Y, Tan Y J, et al. Textile Dyeing and Finishing Journal, 2020, 42(3), 1(in Chinese).
刘姝瑞, 张明宇, 谭艳君, 等. 染整技术, 2020, 42(3), 1.
17 Liu S R, Tan Y J, Huo Q, et al. Textile Auxiliaries, 2017, 34(2), 1(in Chinese).
刘姝瑞, 谭艳君, 霍倩, 等. 印染助剂, 2017, 34(2), 1.
18 Zhang C S, Han J P, Bao Y L, et al. Journal of Solid Technology, 2017, 40(3), 386(in Chinese).
张承双, 韩建平, 包艳玲, 等. 固体火箭技术, 2017, 40(3), 386.
19 Arnold G W, Rye R R. In: 5th International Conference on Radiation Effects in Insulators ( REI-5 ). Canada, 1989, pp.330.
20 Calcagno L, Foti G. In: 7th International Conference on Ion Beam Modification of Materials ( IBMM 90 ). Knoxville, 1990, pp.1153.
21 Klaumunzer S, Zhu Q Q, Schnabel W, et al. In: 8th International Conference on Radiation Effects in Insulators (REI-8)-Beam Interactions with Materials and Atoms. Italy, 1996, pp.154.
22 Fekete Z A, Wilusz E, Karasz F E, et al. Separation and Purification Technology, 2007, 57(3), 440.
23 Hu J, Schulze U, Pionteck J.Polymer, 1999, 40(19), 5279.
24 Mcherron D C, Wilkes G L. Polymer, 1993, 34(5), 915.
[1] 王仕发,李丹明,肖玉华,杨震春,李居平,郝 剑,杨长青. 用于空间辐射环境探测的金刚石探测器研究综述[J]. 《材料导报》期刊社, 2018, 32(9): 1459-1468.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed