Abstract: High-end bearings have become a ‘neck sticking' problem in China's high-end equipment manufacturing industry. The quality of bearing steel is an important basis and guarantee to determine the performance, accuracy, service life and reliability of bearing. Bearing steel has been developed for four generations. High carbon chromium bearing steel has always been the key bearing material with the widest use and the application. It pursues the double ultra refinement of grain and carbide. The embrittlement and fatigue failure caused by grain boundary carbide are the bottleneck to further improve its quality. At present, there are some deficiencies in the traditional microstructure control methods, which hinders the application of bearing steel. The main reason is that the problems such as the large number and size of grain boundary carbides in the quenched structure, which worsen the toughness, and the significant increase of heat treatment deformation caused by the ultra refinement method based on cyclic quenching have not been fundamentally solved. This paper summarizes the development status and trend of high performance bearing steel materials, as well as the cutting-edge technology ofdouble ultra refinement of microstructure. The application of new technologies such as grain boundary amelioration treatment and warm forming in high carbon chromium bearing steel is introduced in detail, and the opportunities and challenges faced by microstructure double ultra refinement technology are discussed. Finally, it is pointed out that the research and development of bearing steel not only needs the improvement of metallurgical quality and the research and development of new bearing steel materials, but also needs the basic theoretical research and technical development of traditional bearing steel, such as ultra refinement and homogenization of microstructure, grain boundary purification control. This helps to break through the common defects of hypereutectoid steel such as bearing steel and tool steel and meet the requirements of localization of high-end bearings.
张朝磊, 朱禹承, 蒋波. 高碳铬轴承钢组织双超细化的研究现状与发展趋势[J]. 材料导报, 2023, 37(6): 21090266-6.
ZHANG Chaolei, ZHU Yucheng, JIANG Bo. Research Status and Development Trend of Microstructure Double Ultra Refinement of High Carbon Chromium Bearing Steel. Materials Reports, 2023, 37(6): 21090266-6.
1 Yu F, Chen X P, Xu H F, et al. Acta Metallurgica Sinica, 2020, 56(4), 513 (in Chinese). 俞峰, 陈兴品, 徐海峰, 等. 金属学报, 2020, 56(4), 513. 2 Li Z K, Lei J Z, Xu H F, et al. Journal of Iron and Steel Research, 2016, 28(3), 1(in Chinese). 李昭昆, 雷建中, 徐海峰, 等. 钢铁研究学报, 2016, 28(3), 1. 3 Li T, Ma Y Q. World Metals, 2021-02-02(B09) (in Chinese). 李涛, 马永强. 世界金属导报, 2021-02-02(B09). 4 Liu B, Huang X Y. Bearing, 2017(12), 59 (in Chinese). 刘波, 黄晓艳. 轴承, 2017(12), 59. 5 Long X Y, Zhang F C, Yang Z N, et al. Materials Science & Engineering A, 2018, 715, 10. 6 Shao R N, He T T, Liu J, et al. Materials Reports, 2021, 35(20), 20062 (in Chinese). 邵若男, 贺甜甜, 刘建, 等. 材料导报, 2021, 35(20), 20062. 7 Zong N F, Huang J, Liu J, et al. Bearing, 2020(12), 60 (in Chinese). 宗男夫, 黄健, 刘军, 等. 轴承, 2020(12), 60. 8 Ma C, Luo H W. Journal of Materials Engineering, 2017, 45(6), 97 (In Chinese). 马超, 罗海文. 材料工程, 2017, 45(6), 97. 9 Lu Z F, Yuan X X, Wang W, et al. Journal of Iron and Steel Research, 2017, 29(2), 144 (in Chinese). 逯志方, 苑希现, 王伟, 等. 钢铁研究学报, 2017, 29(2), 144. 10 Ye Y K, Yao C, Liu Y, et al. Continuous Casting, 2020(6), 15 (in Chinese). 叶玉奎, 姚骋, 刘宇, 等. 连铸, 2020(6), 15. 11 An H H, Zhang G F, Wu J Y, et al. Special Steel, 2021, 42(3), 16 (in Chinese). 安航航, 张国锋, 武佳毅, 等. 特殊钢, 2021, 42(3), 16. 12 Luo T F, Wang W L, Liu Z H, et al. Iron & Steel, 2022, 57(2), 73(in Chinese). 罗腾飞, 王卫领, 刘宗辉, 等. 钢铁, 2022, 57(2), 73. 13 Li L J, Wang Y, Zhai Q J. Journal of Iron and Steel Research, 2021, 33(10), 1018 (in Chinese). 李莉娟, 王郢, 翟启杰. 钢铁研究学报, 2021, 33(10), 1018. 14 Huo X D, Ning Y L, Li L J, et al. Materials Research Express, 2020, 7, 016559. 15 Wang L, Liu Y K, Yu W H, et al. Transactions of Materials and Heat Treatment, 2019, 40(3), 109 (in Chinese). 王蕾, 刘玉坤, 余万华, 等. 材料热处理学报, 2019, 40(3), 109. 16 Yu W H, Shi S J, Liu Y K, et al. Transactions of Materials and Heat Treatment, 2020, 41(1), 80 (in Chinese). 余万华, 石素锦, 刘玉坤, 等. 材料热处理学报, 2020, 41(1), 80. 17 Wang H, Li J, Zhang C L, et al. Ironmaking & Steelmaking, 2021, 48(2), 155. 18 Zhang C L, Shao Z H, Li J, et al. Materials Reports, 2021, 35(5), 5102 (in Chinese). 张朝磊, 邵洙浩, 李戬, 等. 材料导报, 2021, 35(5), 5102. 19 Han H B, Zhao X M, Zhao X Y, et al. Metallurgical Research & Technology, 2017, 114, 208. 20 Han D X, Du L X, Wu H Y, et al. Journal of Northeastern University(Natural Science), 2019, 40(10), 1392 (in Chinese). 韩东序, 杜林秀, 吴红艳, 等. 东北大学学报(自然科学版), 2019, 40(10), 1392. 21 Li C S, Li Z X, Pen J Y, et al. Steel Research International, 2019, 90(3), 1800470. 22 Feng L L, Wu K M, Qiao W W, et al. China Metallurgy, 2020, 30(9), 110 (in Chinese). 冯路路, 吴开明, 乔文玮, 等. 中国冶金, 2020, 30(9), 110. 23 Cao Z X, Shi Z Y, Yu F, et al. International Journal of Fatigue, 2019, 128, 105176. 24 Wang Y S, Chen X C, You L L, et al. Metal Working, 2018(9), 52 (in Chinese). 王艳山, 陈小超, 尤蕾蕾, 等. 金属加工(热加工), 2018(9), 52. 25 Lee K O, Hong S K, Kang Y K, et al. International Journal of Automotive Technology, 2009, 10(6), 697. 26 曹文全, 俞峰, 许达, 等. 中国专利, CN109266825A, 2019. 27 Ooki C. SAE Transactions, 2004, 113, 245. 28 Kong Y H, Zhou J L, Chen Q. Hot Working Technology, 2018, 47(2), 224 (in Chinese). 孔永华, 周江龙, 陈桥. 热加工工艺, 2018, 47(2), 224. 29 钱东升, 华林, 王丰, 等. 中国专利, CN110484694A, 2019. 30 Wang F, Qian D S, Lu X H. Acta Metallurgica Sinica (English Letters), 2019, 32(1), 107. 31 Lu X H, Qian D S, Li W, et al. Materials Letters, 2019, 234, 5. 32 Liu Y J, Qiu D S, Wang Z C, et al. Metal Materials and Metallurgy Engineering, 2021, 49(4), 3 (in Chinese). 刘雨健, 邱冬生, 王自成, 等. 金属材料与冶金工程, 2021, 49(4), 3. 33 Zhang F C, Yang Z N. Engineering, 2019, 5(2), 319. 34 You L W, Wang H W, Hou J, et al. China Metallurgy, 2020, 30(9), 94 (in Chinese). 尤蕾蕾, 王红伟, 侯俊, 等. 中国冶金, 2020, 30(9), 94. 35 Dong Z H, Qian D S, Yin F, et al. Journal of Materials Engineering and Performance, 2021, 30(11), 1. 36 Hiratsuka Y, Yamamoto K, Minamino Y. Sanyo Technical Report, 2017, 24(1), 52 (in Japanese). 37 Minamino Y, Hagihara K, Aihara T, et al. Sanyo Technical Report, 2019, 26(1), 52 (in Japanese). 38 Okazaki Y, Minamino Y, Hagihara K, et al. CAMP-ISIJ, 2017, 30, 935 (in Japanese). 39 Zhang T, Deng H W, Xie Z M, et al. Journal of Materials Science & Technology, 2020, 52(17), 29. 40 Kang J H, Rivera-Díaz-del-Castillo P E J. Computational Materials Science, 2013, 67, 364. 41 Liu Y Z, Hu X W, He G N, et al. Procedia Manufacturing, 2019, 29, 498. 42 Odnobokova M, Yanushkevich Z, Kaibyshev R, et al. Materials, 2020, 13(9), 2116. 43 Hu B, Tu X, Luo H W, et al. Mao. Journal of Materials Science & Technology, 2020, 47(12), 131. 44 He B B, Hu B, Yen H W, et al. Science, 2017, 357(6355), 1029. 45 Huang M X, He B B. Journal of Materials Science & Technology, 2018, 34(3), 417. 46 Liu L, Yu Q, Wang Z, et al. Science, 2020, 368(6497), 1347. 47 Prasad C, Bhuyan P, Kaithwas C, et al. Materials and Design, 2017, 139, 324. 48 Chakraborty J, Bhattacharjee D, Manna I. Scripta Materialia, 2009, 61(6), 604. 49 Li Z X, Li C S, Ren J Y, et al. Materials Science & Engineering A, 2016, 674, 262. 50 Qian D S, Wang H L, Pan L B, et al. Materials Research Express, 2020, 7(4), 046505. 51 Vidhyasagar M, Balachandran G. Transactions of the Indian Institute of Metals, 2021, 74, 767.