Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090266-6    https://doi.org/10.11896/cldb.21090266
  金属与金属基复合材料 |
高碳铬轴承钢组织双超细化的研究现状与发展趋势
张朝磊*, 朱禹承, 蒋波
北京科技大学材料科学与工程学院,北京 100083
Research Status and Development Trend of Microstructure Double Ultra Refinement of High Carbon Chromium Bearing Steel
ZHANG Chaolei*, ZHU Yucheng, JIANG Bo
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 7033KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高端轴承已成为中国高端装备制造业中的“卡脖子”问题。轴承用钢的质量是决定轴承性能、精度、寿命及可靠性的重要基础和保证。轴承钢的发展已经历四代,高碳铬轴承钢始终是使用量最大、适用面最广的轴承关键材料。其在微观组织上追求晶粒和碳化物的双超细化,由晶界碳化物引起的脆化及疲劳破坏是限制其质量进一步提升的瓶颈。
目前,传统的组织调控手段存在一些不足,导致轴承钢应用受阻,不足之处主要是未从根本上解决淬火组织中晶界碳化物数量多、尺寸大从而恶化韧性,以及以循环淬火为主的组织超细化手段显著增大热处理变形等问题。本文概述了高性能轴承钢材料的发展现状与趋势,以及组织双超细化的前沿技术;并详细介绍了晶界改质处理和温成形等新技术在高碳铬轴承钢中的应用情况,探讨了组织双超细化技术面临的机遇与挑战。最后指出不仅需要提升轴承钢的冶金质量和研发新型轴承钢材料,还需要对传统轴承钢的组织超细化均匀化、晶界净化调控等进行基础理论研究和技术开发,突破轴承钢、工具钢等过共析钢的共性短板,满足高端轴承国产化需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张朝磊
朱禹承
蒋波
关键词:  高碳铬轴承钢  组织超细化  晶界改质处理  温成形    
Abstract: High-end bearings have become a ‘neck sticking' problem in China's high-end equipment manufacturing industry. The quality of bearing steel is an important basis and guarantee to determine the performance, accuracy, service life and reliability of bearing. Bearing steel has been developed for four generations. High carbon chromium bearing steel has always been the key bearing material with the widest use and the application. It pursues the double ultra refinement of grain and carbide. The embrittlement and fatigue failure caused by grain boundary carbide are the bottleneck to further improve its quality.
At present, there are some deficiencies in the traditional microstructure control methods, which hinders the application of bearing steel. The main reason is that the problems such as the large number and size of grain boundary carbides in the quenched structure, which worsen the toughness, and the significant increase of heat treatment deformation caused by the ultra refinement method based on cyclic quenching have not been fundamentally solved. This paper summarizes the development status and trend of high performance bearing steel materials, as well as the cutting-edge technology ofdouble ultra refinement of microstructure. The application of new technologies such as grain boundary amelioration treatment and warm forming in high carbon chromium bearing steel is introduced in detail, and the opportunities and challenges faced by microstructure double ultra refinement technology are discussed. Finally, it is pointed out that the research and development of bearing steel not only needs the improvement of metallurgical quality and the research and development of new bearing steel materials, but also needs the basic theoretical research and technical development of traditional bearing steel, such as ultra refinement and homogenization of microstructure, grain boundary purification control. This helps to break through the common defects of hypereutectoid steel such as bearing steel and tool steel and meet the requirements of localization of high-end bearings.
Key words:  high carbon chromium bearing steel    microstructure ultra refinement    grain boundary amelioration treatment    warm forming
发布日期:  2023-03-27
ZTFLH:  TG 142.1  
基金资助: 国家自然科学基金(52174351)
通讯作者:  *张朝磊,北京科技大学材料科学与工程学院副教授,材料加工工程博士、冶金工程博士后、机械工程博士后。主要从事先进钢铁材料研发与短流程绿色制造技术、汽车关键零部件制造技术、精密谐波减速器制造技术等研究。发表学术论文50余篇,授权发明专利10余项。zhangchaolei@ustb.edu.cn   
引用本文:    
张朝磊, 朱禹承, 蒋波. 高碳铬轴承钢组织双超细化的研究现状与发展趋势[J]. 材料导报, 2023, 37(6): 21090266-6.
ZHANG Chaolei, ZHU Yucheng, JIANG Bo. Research Status and Development Trend of Microstructure Double Ultra Refinement of High Carbon Chromium Bearing Steel. Materials Reports, 2023, 37(6): 21090266-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090266  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090266
1 Yu F, Chen X P, Xu H F, et al. Acta Metallurgica Sinica, 2020, 56(4), 513 (in Chinese).
俞峰, 陈兴品, 徐海峰, 等. 金属学报, 2020, 56(4), 513.
2 Li Z K, Lei J Z, Xu H F, et al. Journal of Iron and Steel Research, 2016, 28(3), 1(in Chinese).
李昭昆, 雷建中, 徐海峰, 等. 钢铁研究学报, 2016, 28(3), 1.
3 Li T, Ma Y Q. World Metals, 2021-02-02(B09) (in Chinese).
李涛, 马永强. 世界金属导报, 2021-02-02(B09).
4 Liu B, Huang X Y. Bearing, 2017(12), 59 (in Chinese).
刘波, 黄晓艳. 轴承, 2017(12), 59.
5 Long X Y, Zhang F C, Yang Z N, et al. Materials Science & Engineering A, 2018, 715, 10.
6 Shao R N, He T T, Liu J, et al. Materials Reports, 2021, 35(20), 20062 (in Chinese).
邵若男, 贺甜甜, 刘建, 等. 材料导报, 2021, 35(20), 20062.
7 Zong N F, Huang J, Liu J, et al. Bearing, 2020(12), 60 (in Chinese).
宗男夫, 黄健, 刘军, 等. 轴承, 2020(12), 60.
8 Ma C, Luo H W. Journal of Materials Engineering, 2017, 45(6), 97 (In Chinese).
马超, 罗海文. 材料工程, 2017, 45(6), 97.
9 Lu Z F, Yuan X X, Wang W, et al. Journal of Iron and Steel Research, 2017, 29(2), 144 (in Chinese).
逯志方, 苑希现, 王伟, 等. 钢铁研究学报, 2017, 29(2), 144.
10 Ye Y K, Yao C, Liu Y, et al. Continuous Casting, 2020(6), 15 (in Chinese).
叶玉奎, 姚骋, 刘宇, 等. 连铸, 2020(6), 15.
11 An H H, Zhang G F, Wu J Y, et al. Special Steel, 2021, 42(3), 16 (in Chinese).
安航航, 张国锋, 武佳毅, 等. 特殊钢, 2021, 42(3), 16.
12 Luo T F, Wang W L, Liu Z H, et al. Iron & Steel, 2022, 57(2), 73(in Chinese).
罗腾飞, 王卫领, 刘宗辉, 等. 钢铁, 2022, 57(2), 73.
13 Li L J, Wang Y, Zhai Q J. Journal of Iron and Steel Research, 2021, 33(10), 1018 (in Chinese).
李莉娟, 王郢, 翟启杰. 钢铁研究学报, 2021, 33(10), 1018.
14 Huo X D, Ning Y L, Li L J, et al. Materials Research Express, 2020, 7, 016559.
15 Wang L, Liu Y K, Yu W H, et al. Transactions of Materials and Heat Treatment, 2019, 40(3), 109 (in Chinese).
王蕾, 刘玉坤, 余万华, 等. 材料热处理学报, 2019, 40(3), 109.
16 Yu W H, Shi S J, Liu Y K, et al. Transactions of Materials and Heat Treatment, 2020, 41(1), 80 (in Chinese).
余万华, 石素锦, 刘玉坤, 等. 材料热处理学报, 2020, 41(1), 80.
17 Wang H, Li J, Zhang C L, et al. Ironmaking & Steelmaking, 2021, 48(2), 155.
18 Zhang C L, Shao Z H, Li J, et al. Materials Reports, 2021, 35(5), 5102 (in Chinese).
张朝磊, 邵洙浩, 李戬, 等. 材料导报, 2021, 35(5), 5102.
19 Han H B, Zhao X M, Zhao X Y, et al. Metallurgical Research & Technology, 2017, 114, 208.
20 Han D X, Du L X, Wu H Y, et al. Journal of Northeastern University(Natural Science), 2019, 40(10), 1392 (in Chinese).
韩东序, 杜林秀, 吴红艳, 等. 东北大学学报(自然科学版), 2019, 40(10), 1392.
21 Li C S, Li Z X, Pen J Y, et al. Steel Research International, 2019, 90(3), 1800470.
22 Feng L L, Wu K M, Qiao W W, et al. China Metallurgy, 2020, 30(9), 110 (in Chinese).
冯路路, 吴开明, 乔文玮, 等. 中国冶金, 2020, 30(9), 110.
23 Cao Z X, Shi Z Y, Yu F, et al. International Journal of Fatigue, 2019, 128, 105176.
24 Wang Y S, Chen X C, You L L, et al. Metal Working, 2018(9), 52 (in Chinese).
王艳山, 陈小超, 尤蕾蕾, 等. 金属加工(热加工), 2018(9), 52.
25 Lee K O, Hong S K, Kang Y K, et al. International Journal of Automotive Technology, 2009, 10(6), 697.
26 曹文全, 俞峰, 许达, 等. 中国专利, CN109266825A, 2019.
27 Ooki C. SAE Transactions, 2004, 113, 245.
28 Kong Y H, Zhou J L, Chen Q. Hot Working Technology, 2018, 47(2), 224 (in Chinese).
孔永华, 周江龙, 陈桥. 热加工工艺, 2018, 47(2), 224.
29 钱东升, 华林, 王丰, 等. 中国专利, CN110484694A, 2019.
30 Wang F, Qian D S, Lu X H. Acta Metallurgica Sinica (English Letters), 2019, 32(1), 107.
31 Lu X H, Qian D S, Li W, et al. Materials Letters, 2019, 234, 5.
32 Liu Y J, Qiu D S, Wang Z C, et al. Metal Materials and Metallurgy Engineering, 2021, 49(4), 3 (in Chinese).
刘雨健, 邱冬生, 王自成, 等. 金属材料与冶金工程, 2021, 49(4), 3.
33 Zhang F C, Yang Z N. Engineering, 2019, 5(2), 319.
34 You L W, Wang H W, Hou J, et al. China Metallurgy, 2020, 30(9), 94 (in Chinese).
尤蕾蕾, 王红伟, 侯俊, 等. 中国冶金, 2020, 30(9), 94.
35 Dong Z H, Qian D S, Yin F, et al. Journal of Materials Engineering and Performance, 2021, 30(11), 1.
36 Hiratsuka Y, Yamamoto K, Minamino Y. Sanyo Technical Report, 2017, 24(1), 52 (in Japanese).
37 Minamino Y, Hagihara K, Aihara T, et al. Sanyo Technical Report, 2019, 26(1), 52 (in Japanese).
38 Okazaki Y, Minamino Y, Hagihara K, et al. CAMP-ISIJ, 2017, 30, 935 (in Japanese).
39 Zhang T, Deng H W, Xie Z M, et al. Journal of Materials Science & Technology, 2020, 52(17), 29.
40 Kang J H, Rivera-Díaz-del-Castillo P E J. Computational Materials Science, 2013, 67, 364.
41 Liu Y Z, Hu X W, He G N, et al. Procedia Manufacturing, 2019, 29, 498.
42 Odnobokova M, Yanushkevich Z, Kaibyshev R, et al. Materials, 2020, 13(9), 2116.
43 Hu B, Tu X, Luo H W, et al. Mao. Journal of Materials Science & Technology, 2020, 47(12), 131.
44 He B B, Hu B, Yen H W, et al. Science, 2017, 357(6355), 1029.
45 Huang M X, He B B. Journal of Materials Science & Technology, 2018, 34(3), 417.
46 Liu L, Yu Q, Wang Z, et al. Science, 2020, 368(6497), 1347.
47 Prasad C, Bhuyan P, Kaithwas C, et al. Materials and Design, 2017, 139, 324.
48 Chakraborty J, Bhattacharjee D, Manna I. Scripta Materialia, 2009, 61(6), 604.
49 Li Z X, Li C S, Ren J Y, et al. Materials Science & Engineering A, 2016, 674, 262.
50 Qian D S, Wang H L, Pan L B, et al. Materials Research Express, 2020, 7(4), 046505.
51 Vidhyasagar M, Balachandran G. Transactions of the Indian Institute of Metals, 2021, 74, 767.
No related articles found!
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed