Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 25060088-6    https://doi.org/10.11896/cldb.25060088
  金属与金属基复合材料 |
质能异步化薄膜沉积系统的膜厚均匀性分析与修正挡板设计
吕亮1, 王宇翔2, 夏志林2, 于思源3,*
1 哈尔滨工业大学航天学院,哈尔滨 150001
2 武汉理工大学材料科学与工程学院,武汉 430070
3 哈尔滨工业大学仪器科学与工程学院,哈尔滨 150001
Analysis of Film Thickness Uniformity and Design of Correction Baffles for the Asynchronous Mass-Energy Thin Film Deposition System
LYU Liang1, WANG Yuxiang2, XIA Zhilin2, YU Siyuan3,*
1 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 8616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为满足空间光学系统中对大尺寸光学薄膜厚度均匀性的高要求,对自主设计的质能异步化磁控溅射薄膜沉积系统进行了膜厚均匀性建模与分析。该系统通过将薄膜沉积过程离散化,并引入变角度辅助离子束轰击,有效抑制节瘤缺陷,从而提升薄膜的激光损伤阈值。在此基础上,构建了适用于该装置的膜厚分布计算模型,分析了靶材宽度、高度、靶材与样品架轴心的距离、样品架半径等结构参数对膜厚均匀性的影响规律。计算结果表明:靶材宽度对膜厚均匀性的影响较小;靶材高度越大,垂直方向膜厚分布越均匀;当靶材与样品架的距离小于样品架半径的1.5倍时,膜厚均匀性随距离增加而变差;当该距离超过1.5倍后,均匀性反而有所改善。此外,样品架半径的变化对膜厚分布的影响不显著。在上述结构参数的优化效果不够的情况下,设计了膜厚修正挡板,利用仿真得到的原始膜厚分布信息对靶材的有效工作区域进行调控。修正结果显示,样品膜厚均匀性显著改善,初始的差异系数由大于0.35降低至小于0.005,对应100 nm膜层厚度时的厚度差仅为0.5 nm,显著提升了膜厚控制精度。研究结果可为复杂沉积系统的结构优化提供理论指导,也为高均匀性光学薄膜元件的批量制备提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕亮
王宇翔
夏志林
于思源
关键词:  质能异步沉积  薄膜厚度均匀性  磁控溅射  光学薄膜  结构参数优化    
Abstract: To meet the high requirements for thickness uniformity of large-size optical thin films in space optical systems, this work conducts modeling and analysis of film thickness uniformity for a self-designed mass-energy asynchronous magnetron sputtering thin film deposition system. This system effectively suppresses nodule defects and thereby improves the laser damage threshold of the film by discretizing the thin film deposition process and introducing variable-angle auxiliary ion beam bombardment. On this basis, a calculation model of film thickness distribution sui-table for this device is constructed, and the influence laws of structural parameters such as target width, target height, the distance between the target and the axis of the sample holder, and the radius of the sample holder on film thickness uniformity are systematically analyzed. The calculation results show that:the target width has a relatively small impact on film thickness uniformity;the larger the target height, the more uniform the film thickness distribution in the vertical direction;when the distance between the target and the sample holder is less than 1.5 times the radius of the sample holder, the film thickness uniformity becomes worse as the distance increases;when this distance exceeds 1.5 times, the uniformity is instead improved;in addition, the change in the radius of the sample holder has no significant effect on the film thickness distribution. When the optimization effect of adjusting the above structural parameters is limited, this paper designs a film thickness correction baffle, which uses the ori-ginal film thickness distribution information obtained by simulation to regulate the effective working area of the target. The correction results show that the film thickness uniformity of the sample is significanty improved, and the initial difference coefficient decreased from more than 0.35 to less than 0.005, and the thickness difference corresponding to a 100 nm film thickness is only 0.5 nm, which significantly improves the film thickness control accuracy. The research results provide theoretical guidance for the structural optimization of complex deposition systems and also provide technical support for the batch preparation of high-uniformity optical thin film components.
Key words:  mass-energy asynchronous deposition    film thickness uniformity    magnetron sputtering    optical film    structural parameter optimization
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TN304  
基金资助: 国家自然科学基金(62475109)
通讯作者:  *于思源,哈尔滨工业大学仪器科学与工程学院教授、博士研究生导师,国家级高层次人才。主要从事空间光通信总体技术、光束瞄准捕获跟踪控制技术、光信号大气传输补偿技术等方面的研究。yusiyuan@hit.edu.cn   
作者简介:  吕亮,哈尔滨工业大学航天学院博士研究生,高级工程师,从事空间激光通信总体技术方面的研究。
引用本文:    
吕亮, 王宇翔, 夏志林, 于思源. 质能异步化薄膜沉积系统的膜厚均匀性分析与修正挡板设计[J]. 材料导报, 2025, 39(23): 25060088-6.
LYU Liang, WANG Yuxiang, XIA Zhilin, YU Siyuan. Analysis of Film Thickness Uniformity and Design of Correction Baffles for the Asynchronous Mass-Energy Thin Film Deposition System. Materials Reports, 2025, 39(23): 25060088-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25060088  或          https://www.mater-rep.com/CN/Y2025/V39/I23/25060088
1 Liu X Z, Xu D, Li D, et al. Acta Aeronautica et Astronautica Sinica, 2024, 45(19), 292(in Chinese).
刘显著, 徐达, 李栋, 等. 航空学报, 2024, 45(19), 292.
2 Coder R D, Holzinger M J. Acta Astronautica, 2016, 128, 669.
3 He L, Wang X Y, Tian H S, et al. Materials Reports, 2024, 38(Z1), 38(in Chinese).
何亮, 王祥宇, 田浩生, 等. 材料导报, 2024, 38 (Z1), 38.
4 Yang Y, Wang W H, Li L S, et al. Materials Reports, 2025, 39(10), 26(in Chinese).
杨宇, 王伟华, 李连升, 等. 材料导报, 2025, 39(10), 26.
5 Miao Y, Li J C, Lin H A, et al. Optical Engineering, 2023, 62, 065107.
6 Huang C, Li J P, Cai Z H, et al. Photonics, 2023, 10, 768.
7 Ling X L, Liu S H, Liu X F. Thin Solid Films, 2020, 703, 137974. 1.
8 Chen Z, Tian Y, Zhu J, et al. Crystals, 2023, 13, 571.
9 Xie L Y, He T, Zhang J L, et al. High Power Laser and Particle Beams, 2018, 30(9), 092001(in Chinese).
谢凌云, 何涛, 张锦龙, 等. 强激光与粒子束, 2018, 30(9) 092001.
10 Zhang S M, Su Z Y, Menoni C S, et al. Optics Letters, 2023, 48(12), 1212.
11 夏志林, 肖迎澳. 中国专利, 202411726282. 3, 2024.
12 Liu X Y, Zhao L, Xu S, et al. Vacuum, 2003, 3(4), 16(in Chinese).
刘翔宇, 赵来, 许生, 等. 真空, 2003, 3(4), 16.
13 Fu C L, Yang C R, Han L G, et al. Surface and Coatings Technology, 2006, 200, 3687.
14 Liu H X, Hang L X, Xue J. Optical Instruments, 2014, 36(4), 364(in Chinese).
刘昊轩, 杭凌侠, 薛俊. 光学仪器, 2014, 36(4), 364.
15 Zhang Y N, Zhou Z C, Zhang H, et al. Materials Reports, 2022, 36(24), 47(in Chinese).
张亚南, 周子超, 张豪, 等. 材料导报, 2022, 36(24), 47.
16 Pan Y G, Liu Z, Wang B, et al. Laser & Optoelectronics Progress, 2021, 58(5), 331(in Chinese).
潘永刚, 刘政, 王奔, 等. 激光与光电子学进展, 2021, 58(5), 331.
17 Filip A V, Sava B A, Medianu R V, et al. Inorganics, 2022, 10, 235.
18 Shin S J, Bayu A L B, Bae J H, et al. Journal of Applied Physics, 2021, 130(12), 125305.
19 Wei B Y, Liu D M, Fu X H, et al. Acta Optica Sinica, 2021, 41(7), 222(in Chinese).
魏博洋, 刘冬梅, 付秀华, 等. 光学学报, 2021, 41(7), 222.
20 Jetjamnong C, Chotikaprakhan S, Kowong R, et al. Vacuum, 2022, 196, 110777.
21 Petroski K A, Sagás J C. Vacuum, 2020, 182, 109703.
22 Mattox D M. Handbook of physical vapor deposition (PVD) processing, William Andrew Publishing, Norwich, NY, 2010, pp. 333
23 Wu H, Zhang W P, Wang L H. Equipment for Electronic Products Manufacturing, 2024, 53(1), 24(in Chinese).
吴海, 张文朋, 王露寒. 电子工业专用设备, 2024, 53(1), 24.
[1] 李锐, 李瑞剑, 江洪渠, 罗圆, 赵琪, 易健宏, 刘意春. 钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展[J]. 材料导报, 2025, 39(17): 24060122-7.
[2] 石红利, 徐文杰, 桂凯旋, 陈静, 金海涛, 胡小刚. 磁控溅射制备Cr涂层及其在工况下的氧化行为研究[J]. 材料导报, 2025, 39(13): 24070064-10.
[3] 李迎春, 杨更生, 杨明宣, 邱明, 范恒华. 调制周期对磁控溅射Cr/类石墨碳多层膜腐蚀-磨损性能的影响[J]. 材料导报, 2024, 38(21): 23070129-7.
[4] 乔礼红, 游才印, 付花睿, 田娜, 白洋, 刘小鱼. 不同界面次序CoFeMnSi多层膜的磁各向异性[J]. 材料导报, 2024, 38(18): 23040015-6.
[5] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[6] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[7] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[8] 李彤, 赵卓, 武俊生, 方方, 周艳文. 粉末靶磁控溅射ZnO/Cu/ZnO的制备及表征[J]. 材料导报, 2022, 36(6): 20120259-4.
[9] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[10] 张亚南, 周子超, 张豪, 肖宇琦, 邓娜, 付彬芸, 多树旺. 工艺参数对等离子增强磁控溅射TiAlN涂层微观结构及性能的影响[J]. 材料导报, 2022, 36(24): 21010184-6.
[11] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[12] 郦其乐, 杨勇, 魏玉全, 刘盟, 周洪军, 霍同林, 黄政仁. 不同B/C摩尔比碳化硼薄膜的光学性能[J]. 材料导报, 2021, 35(2): 2006-2011.
[13] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[14] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[15] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed