Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24070128-7    https://doi.org/10.11896/cldb.24070128
  无机非金属及其复合材料 |
基于可视化的液态二氧化碳辅助注塑工艺穿透过程的研究
杨帆1, 柳和生2,*, 匡唐清2,*, 梁健康2
1 华东交通大学基础实验与工程实践中心,南昌 330013
2 华东交通大学机电与车辆工程学院,南昌 330013
Visualization-based Study on the Penetration Process of Liquid Carbon Dioxide-assisted Injection Molding Process
YANG Fan1, LIU Hesheng2,*, KUANG Tangqing2,*, LIANG Jiankang2
1 Fundamental Experiment and Engineering Practice Center, East China Jiaotong University, Nanchang 330013, China
2 School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 27741KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为克服流体辅助注塑工艺及衍生工艺封闭型腔内部成型过程的不可见性,研究流体及浮芯的穿透过程,设计一套可通过高速摄像机采集型腔中熔体流动行为和流体等穿透过程的可视化模具,基于此获得工艺过程中流体等的穿透形貌及穿透速度,从而分析工艺的穿透机理。结果表明:流体及浮芯的穿透前沿均为流线型,管件缺陷的产生与介质流体的物性变化密切相关。在液态二氧化碳辅助注塑成型工艺中,一定范围内熔体注射量越大,成型管件的内壁质量越好。在液态二氧化碳驱动浮芯辅助注塑成型工艺中,随着流体注射压力的增大,可视化区域浮芯穿透速度增大,下降幅度减小;随着浮芯注射延迟时间的增加,浮芯穿透速度的变化趋势相似,下降幅度减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨帆
柳和生
匡唐清
梁健康
关键词:  液态二氧化碳辅助注塑  可视化  相变  穿透机理  浮芯    
Abstract: To overcome the invisibility of the molding process within enclosed cavities in the fluid-assisted injection molding (FAIM) and its derivative processes, study the penetration process of fluid and projectile, a set of visual molds was designed to capture the flow behavior of the melt and the penetration process of fluid in the cavity through a high-speed camera. Based on this, the penetration morphology and penetration speed of fluid during the process were obtained, thus analyzing the penetration mechanism of the process. The results indicate that both the penetration fronts of the fluid and the projectile exhibit streamlined shapes, and the occurrence of defects in the tubular parts is closely related to changes in the physical properties of the medium fluid. In liquid carbon dioxide-assisted injection molding (LCO2-AIM), an increased melt injection volume within a certain range leads to improved inner wall quality of the formed tubular parts, while a higher fluid injection pressure results in a more signi-ficant reduction in fluid penetration velocity. In liquid carbon dioxide-powered projectile-assisted injection molding (LCO2-PAIM), as the fluid injection pressure increases, the penetration speed of the projectile in the visualization area increases and the decrease decreases; as the injection delay time of projectile increases, the trend of the projectile penetration speed is similar, and the decrease in magnitude decreases.
Key words:  liquid carbon dioxide-assisted injection molding    visualization    phase transition    penetration mechanism    projectile
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TQ320.66  
基金资助: 江西省自然科学基金重点项目(20232ACB204004);国家自然科学基金(52273033;52163006);江西省重点研发计划“揭榜挂帅”项目(20223BBE51012)
通讯作者:  *柳和生,华东交通大学机电与车辆工程学院教授、博士研究生导师。目前主要从事轨道交通工具轻量化设计、高分子材料成型工艺与装备等方面的研究。hsliu@ecjtu.edu.cn
匡唐清,华东交通大学机电与车辆工程学院教授、博士研究生导师。目前主要从事轨道交通工具轻量化设计、高分子材料成型工艺与装备等方面的研究。tkuang@ecjtu.edu.cn   
作者简介:  杨帆,华东交通大学博士研究生,在柳和生教授的指导下进行研究。目前主要研究领域为聚合物成型工艺。
引用本文:    
杨帆, 柳和生, 匡唐清, 梁健康. 基于可视化的液态二氧化碳辅助注塑工艺穿透过程的研究[J]. 材料导报, 2025, 39(21): 24070128-7.
YANG Fan, LIU Hesheng, KUANG Tangqing, LIANG Jiankang. Visualization-based Study on the Penetration Process of Liquid Carbon Dioxide-assisted Injection Molding Process. Materials Reports, 2025, 39(21): 24070128-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070128  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24070128
1 Liu X P, Pan H, Xiang D. Machinery Design & Manufacture, 2012(11), 1(in Chinese).
刘学平, 潘灏, 向东. 机械设计与制造, 2012(11), 1.
2 Fan Z J, Gui L J, Su R Y. Journal of Automotive Safety and Energy, 2014, 5(1), 1(in Chinese).
范子杰, 桂良进, 苏瑞意. 汽车安全与节能学报, 2014, 5(1), 1.
3 Deng L X. Engineering Plastics Application, 2013, 41(6), 54(in Chinese).
邓丽霞. 工程塑料应用, 2013, 41(6), 54.
4 Czepiel M, Bańkosz M, Sobczak-Kupiec A. Materials, 2023, 16(17), 5802.
5 Liu X H, Pan Y M, Zheng G Q, et al. Macromolecular Materials and Engineering. 2018, 303(8), 1.
6 Zhang W, Kuang T Q, Liu H S, et al. Journal of Polymer Engineering, 2022, 42(4), 362.
7 Liu T, Kuang T Q, Lai J M, et al. Journal of East China Jiaotong University, 2021, 38(3), 102(in Chinese).
刘天, 匡唐清, 赖家美, 等. 华东交通大学学报, 2021, 38(3), 102.
8 Yu Z, Liu H S, Kuang T Q, et al. Journal of Applied Polymer Science, 2020, 137 (47), 1.
9 Kuang T Q, Pan J Y, Feng Q, et al. Polymer Engineering & Science, 2019, 59(2), 295.
10 Chen Z S, Liu H S, Yu Z, et al. Polymer Materials Science & Engineering, 2020, 36(2), 112(in Chinese).
陈忠仕, 柳和生, 余忠, 等. 高分子材料科学与工程, 2020, 36(2), 112.
11 Yu Z, Liu H S, Kuang T Q, et al. Advances in Polymer Technology, 2020, 2020, 1.
12 Huang Y B, Zhang K, Yu Z, et al. Polymer Materials Science & Engineering, 2023, 39 (11), 82(in Chinese).
黄益宾, 章凯, 余忠, 等. 高分子材料科学与工程, 2023, 39 (11), 82.
13 Zhong L H, Kuang T Q, Lai J M, et al. China Plastics, 2021, 35(5), 11(in Chinese).
钟罗浩, 匡唐清, 赖家美, 等. 中国塑料, 2021, 35(5), 11.
14 Wang J M, Kuang T Q, Liu H S, et al. Acta Materiae Compositae Sinica, 2024, 41(5), 2436(in Chinese).
王佳敏, 匡唐清, 柳和生, 等. 复合材料学报, 2024, 41(5), 2436.
15 Huang D Y, Liu H S, Kuang T Q, et al. Advances in Materials Science and Engineering, DOI:10. 1155/2022/6596464.
16 Kuang T Q, Feng Q, Liu T, et al. Advances in Polymer Technology, DOI:10. 1155/2020/6861216.
17 Huang D Y, Liu H S, Kuang T Q, et al. Advances in Polymer Technology, DOI:10. 1155/2022/9968902.
18 Yokoi H, Hayasaki S. Journal of Flow Visualization and Image Processing, 2000, 7, 231.
19 Yang S Y, Liou S J, Liou W N. Advances in Polymer Technology, 1997, 16, 175.
20 Liu S J, Wu Y C. Polymer Testing, 2007, 26, 232.
21 Liu X H, Huang H X. China Plastics, 2009, 23(3), 58(in Chinese).
刘旭辉, 黄汉雄. 中国塑料, 2009, 23(3), 58.
22 Jiang K Y, Duan F, Tian J N, et al. Polymer Materials Science & Engineering, 2012, 28(11), 129(in Chinese).
姜开宇, 段飞, 田净娜, 等. 高分子材料科学与工程, 2012, 28(11), 129.
23 Gao M, Shen N N, Zhang L X, et al. China Measurement & Test, 2021, 47(2), 32(in Chinese).
高明, 申楠楠, 章立新, 等. 中国测试, 2021, 47(2), 32.
24 Zhang Z J, Li M, Zhang L Q, et al. Low Temperature and Specialty Gases, 2023, 41(5), 8(in Chinese).
庄正杰, 李明, 张立清, 等. 低温与特气, 2023, 41(5), 8.
25 Polikhronidi N, Batyrova R, Aliev A, et al. Journal of Thermal Science, 2019, 28(3), 394.
26 Kuang T Q, Deng Y, Yu C C, et al. Polymer Materials Science & Engineering, 2015, 31(4), 121.
匡唐清, 邓洋, 余春丛, 等. 高分子材料科学与工程, 2015, 31(4), 121.
[1] 王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
[2] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[3] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[4] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[5] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[6] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[7] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[8] 贾亮, 张玮玮, 陈振瑞. 相变石蜡改性玻化微珠保温砂浆的导热性能[J]. 材料导报, 2025, 39(21): 24100132-5.
[9] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[10] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[11] 肖世杰, 茆峰, 邹青, 曾献, 燕青芝. 冷压成型-无压烧结制备高强度氧化铋陶瓷[J]. 材料导报, 2025, 39(16): 24090140-7.
[12] 王汇杰, 胡江涛, 盖晓倩, 刘馨蔓, 李仁爱, 肖惠宁, 刘超. 纳米纤维素在相变储能领域的应用研究进展[J]. 材料导报, 2025, 39(16): 24080046-12.
[13] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[14] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[15] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed