Study on the Oxidation Resistance of GH 783 Alloy and NiCoCrAlYTa Coating
CHEN Xiaoping1,2, TAO Xiancheng3, BAO Ting1,2, ZHAO Ningning1,2, LOU Yumin1,2, YUE Jianling3,*
1 Zhejiang Energy Technology Research Institute Co., Ltd., Hangzhou 311121, China 2 Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power of Zhejiang Province, Hangzhou 311121, China 3 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Abstract: This work innovatively utilized multi arc ion plating technology to prepare NiCoCrAlYTa coatings on GH 783 alloy. The microstructure of the coatings was characterized by SEM, XRD, and EDX detection methods, and the effect of NiCoCrAlYTa coatings on the high-temperature oxidation behavior of GH 783 alloy was studied. The results show that the prepared NiCoCrAlYTa coating has a dense structure and a thickness of about 30 μm, the main reinforcing phase is Ni3Al, and the coating structure is rich in Al on the outer layer and Cr on the inner layer. The enrichment of trace element Y in the coating on the surface is beneficial for improving the adhesion of the oxide film, while the enrichment of Ta at the interface between the coating and the substrate is beneficial for enhancing the adhesion of the coating. After adding NiCoCrAlYTa coating, the weight gain trend of GH 783 sample during oxidation at 1 000 ℃ can be slowed down, and the oxidation rate is relatively stable. It can effectively reduce the amount of oxide skin detachment, and improve the overall antioxidant performance of the material from secondary to antioxidant le-vels. The reason why NiCoCrAlYTa coating has excellent high-temperature oxidation resistance is that during the preparation process of NiCoCr-AlYTa coating, Al2O3 thin films are generated on the coating surface, which can maintain the presence of the reinforcing phase Ni3Al in the NiCoCrAlYTa coating.
1 Zhou W L, Peng Y C, He Z Q, et al. Zhejiang Electric Power, 2019, 38(9), 43 (in Chinese). 周伟龙, 彭以超, 何志瞧, 等. 浙江电力, 2019, 38(9), 43. 2 Huang Y Q, Wang F, Peng Y C, et al. Zhejiang Electric Power, 2018, 37(5), 79 (in Chinese). 黄友桥, 王飞, 彭以超, 等. 浙江电力, 2018, 37(5), 79. 3 Duan S L. High temperature oxidation behavior of nickel base alloy and high temperature protective coating. Master's Thesis, Shenyang Ligong University, China, 2017 (in Chinese). 段绍岭. 一种镍基合金及高温防护涂层的高温氧化行为. 硕士学位论文, 沈阳理工大学, 2017. 4 Yang K H. High temperature oxidation resistance of nickel-based alloys and protective coating. Master's Thesis, Shenyang Ligong University, China, 2016 (in Chinese). 杨科慧. 镍基合金及防护涂层的高温氧化性能. 硕士学位论文, 沈阳理工大学, 2016. 5 Jiang T, Wang J G, Zhang Z B, et al. Thermal Power Generation, 2016, 45(1), 93 (in Chinese). 姜涛, 王建光, 张志博, 等. 热力发电, 2016, 45(1), 93. 6 Jia R F, Li L, Qin C P, et al. Turbine Technology, 2019, 61(1), 78 (in Chinese). 贾若飞, 李梁, 秦承鹏, 等. 汽轮机技术, 2019, 61(1), 78. 7 Ren X. High-temperature oxidation and hotcorrosion behaviors of severalhigh-temperature protective coatings. Ph. D. Thesis, Nanjing University of Science & Technology, China, 2005 (in Chinese). 任鑫. 几种高温防护涂层的高温氧化和热腐蚀行为研究. 博士学位论文, 南京理工大学, 2005. 8 Goward G W. Surface and Coatings Technology, 1998, 108, 73. 9 Rahmani K, Nategh S. Materials & Design, 2009, 30(4), 1183. 10 Wang X Y, Xin L, Wei H, et al. Corrosion Science and Protection Technology, 2013, 25(3), 175(in Chinese). 王心悦, 辛丽, 韦华, 等. 腐蚀科学与防护技术, 2013, 25(3), 175. 11 Zhou H M, Yi D Q, Xiao L R. Journal of Central South University (Science and Technology), 2007, 38(5), 830(in Chinese). 周宏明, 易丹青, 肖来荣. 中南大学学报(自然科学版), 2007, 38(5), 830. 12 Nicholls J R, Stephenson D J. Surface Engineering, 1991, 3, 134. 13 Nitin P, Padture M C, Eric H, et al. Science, 2002, 5(4), 28. 14 Nicholls J R. Journal of Management, 2000, 52, 28. 15 Smialek J G. Surface & Interface Analysis, 2001, 31, 582. 16 Luo S. Research on the protective performance of nickel based single crystal alloy MCrAlY coating. Master's Thesis, Central South University, China, 2009 (in Chinese). 罗顺. 镍基单晶合金MCrAlY涂层防护性能研究. 硕士学位论文, 中南大学, 2009. 17 He B, Li Y, Wei H, et al. Journal of Shenyang Agricultural University, 2013, 44(6), 841(in Chinese). 何波, 李莹, 韦华, 等. 沈阳农业大学学报. 2013, 44(6), 841. 18 Fan Z S, He T T. Materials Protection, 2013, 46(7), 49(in Chinese). 樊自栓, 何婷婷. 材料保护, 2013, 46(7), 49. 19 Wu F J, Li J P. Material Engineering, 1998(12), 8(in Chinese). 吴凤筠, 李建平. 材料工程, 1998(12), 8. 20 Thomas A, Taylor D, Bettridge F. Surface and Coatings Technology, 1996, 86-87(12), 9. 21 Du W. Study on the microstructure and high-temperature oxidation resis-tance of arc ion plated MCrAlY coating. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese). 杜伟. 电弧离子镀MCrAlY涂层的组织结构及抗高温氧化性能研究. 硕士学位论文, 昆明理工大学, 2018. 22 Longa Y, Takemoto M. Advanced Manufacturing Processes, 1995, 10(2), 217. 23 Fox P, Tatlock G J.Materials Science and Technology, 1989, 5(8), 816. 24 Ma F. Researching on high-temperature oxidation property of NiCrAlY coatings on nickel-base superalloy K465. Master's Thesis, Harbin Engineering University, China, 2012(in Chinese). 马飞. K465镍基高温合金沉积NiCrAlY涂层抗高温氧化性能研究. 硕士学位论文, 哈尔滨工程大学, 2012. 25 Xie S M. Preparation and oxidation resistance of NiCoCrAlYTa coating by arc ion plating. Master's Thesis, South China University of Technology, China, 2017(in Chinese). 谢世明. 电弧离子镀NiCoCrAlYTa涂层的制备及抗氧化性研究. 硕士学位论文, 华南理工大学, 2017. 26 Duan J L. Static oxidation behavior of superalloy GH99 and MCrAlY (Ta) (M=Ni, Co) coatings at high temperatures. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese). 段佳林. GH99高温合金及其MCrAlY(Ta)(M=Ni, Co)涂层静态高温氧化行为研究. 硕士学位论文, 哈尔滨工业大学, 2011. 27 Wang B, Gong J, Wang C, et al. Surface and Coatings Technology, 2002, 149(1), 168.