Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060129-8    https://doi.org/10.11896/cldb.24060129
  高分子与聚合物基复合材料 |
大斯托克斯位移荧光染料研究进展
郑森哲1,3, 董文坤2,3, 陈东2,3, 凌世生2,3, 乔旭升1,3,*, 樊先平1,3
1 浙江大学材料科学与工程学院硅及先进半导体材料全国重点实验室,杭州 310027
2 杭州安旭生物科技有限公司,杭州 310011
3 浙江大学-安旭生物联合研发中心,杭州 310058
Research Progress on Large Stokes Shift Fluorescent Dyes
ZHENG Senzhe1,3, DONG Wenkun2,3, CHEN Dong2,3, LING Shisheng2,3, QIAO Xusheng1,3,*, FAN Xianping1,3
1 School of Materials Science and Engineering & State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China
2 Assure Tech.(Hangzhou) Co., Ltd., Hangzhou 310011, China
3 ZJU-ASSURE Research & Development Center, Hangzhou 310058, China
下载:  全 文 ( PDF ) ( 9263KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 染料作为一种重要的荧光材料,被广泛应用于目标物的标记与染色。然而,常用荧光染料的斯托克斯位移往往很小,其荧光信号容易受到背景激发光与染料自吸收的的干扰。过去的几十年间,许多大斯托克斯位移荧光染料被设计、合成和应用,多种扩大斯托克斯位移的机理被提出、发展和验证。本文综述了四种增大斯托克斯位移的机理,并梳理出基于三类不同骨架的大斯托克斯位移荧光染料,从引入取代基与扩大共轭体系的角度分析了大斯托克斯位移的来源。最后,总结了大斯托克斯位移荧光染料的研究进展,并以具有代表性的荧光染料为例,分析基于不同机理的大斯托克斯位移荧光染料分子的构建思路与光物理过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑森哲
董文坤
陈东
凌世生
乔旭升
樊先平
关键词:  荧光染料  大斯托克斯位移  激发态分子内质子转移  分子内电荷转移  能量转移    
Abstract: As an important class of fluorescent materials,fluorescent dyes are widely used to label and stain target in a great variety of fields. However, commercially available fluorescent dyes often exhibit very small Stokes shifts, resulting in their fluorescent signal easily influenced by high background interference and self-absorption. Over the past few decades, abundant fluorescent dyes with large Stokes shifts have been synthesized and various mechanisms to extend the Stokes shift have also been developed and implemented. In this paper, we reviewed four mechanisms to enlarge Stokes shift and three types of large Stokes shift fluorescent dyes based on different frameworks. The sources of large Stokes shift are attributed to the substituent groups and the expanded conjugation system. Finally, the research progress to enlarge Stokes shift is introduced while analyzing the ideas to design molecule and photophysical processes based on different mechanisms with representative fluorescent dyes.
Key words:  fluorescent dye    large Stokes shift    excited-state intramolecular proton transfer    intramolecular charge transfer    energy transfer
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TQ617.3  
基金资助: 浙江省“领雁”研发攻关计划(2022C01142)
通讯作者:  * 乔旭升,博士,浙江大学材料科学与工程学院副教授,博士研究生导师。目前主要从事发光玻璃与玻璃陶瓷、生物荧光标记材料与材料计算等领域的教学与科研工作。qiaoxus@zju.edu.cn   
作者简介:  郑森哲,浙江大学材料科学与工程学院硕士研究生。目前主要研究领域为近红外大斯托克斯位移荧光染料。
引用本文:    
郑森哲, 董文坤, 陈东, 凌世生, 乔旭升, 樊先平. 大斯托克斯位移荧光染料研究进展[J]. 材料导报, 2025, 39(14): 24060129-8.
ZHENG Senzhe, DONG Wenkun, CHEN Dong, LING Shisheng, QIAO Xusheng, FAN Xianping. Research Progress on Large Stokes Shift Fluorescent Dyes. Materials Reports, 2025, 39(14): 24060129-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060129  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060129
1 Ortolani C. Flow cytometry today:everything you need to know about flow cytometry, Springer US, USA, 2022, pp. 1.
2 Mahallawi W H, Khabour O F, Zhang Q, et al. Cytokine, 2018, 104, 8.
3 Schulz D, Zanotelli V R T, Fischer J R, et al. Cell Systems, 2018, 6, 25.
4 Li B, Zhao M, Zhang F. ACS Materials Letters, 2020, 2, 905.
5 Wu X, Zhu W. Chemical Society Reviews, 2015, 44, 4179.
6 Nolan E M, Lippard S J. Chemical Reviews, 2008, 108, 3443.
7 Leng Y, Sun K, Chen X, et al. Chemical Society Reviews, 2015, 44, 5552.
8 Chen F X, Liu Y Y, Bu W B. Journal of the Chinese Society of Rare Earths, 2023, 41(1), 1 (in Chinese).
陈飞翔, 刘艳颜, 步文博. 中国稀土学报, 2023, 41(1), 1.
9 Fulton R J, McDade R L, Smith P L, et al. Clinical Chemistry, 1997, 43, 1749.
10 Lavis L D, Raines R T. ACS Chemical Biology, 2014, 9, 855.
11 Ren T B, Xu W, Zhang W, et al. Journal of the American Chemical Society, 2018, 140, 7716.
12 Goodman J, Brus L E. Journal of the American Chemical Society, 1978, 100, 7472.
13 Weller A. Naturwissenschaften, 1955, 42, 175.
14 Kwon J E, Park S Y. Advanced Materials, 2011, 23, 3615.
15 Jares-Erijman E A, Jovin T M. Nature Biotechnology, 2003, 21, 1387.
16 Sun T K, Min H, Han Z S, et al. Journal of the Chinese Society of Rare Earths, 2023, 41(3), 476 (in Chinese).
孙天凯, 闵辉, 韩宗甦, 等. 中国稀土学报, 2023, 41(3), 476.
17 Fan J, Hu M, Zhan P, et al. Chemical Society Reviews, 2012, 42, 29.
18 Kim S B. Live cell imaging:methods and protocols, Springer US, USA, 2021, pp. 103.
19 Sedgwick A C, Wu L, Han H-H, et al. Chemical Society Reviews, 2018, 47, 8842.
20 Abeywickrama C S. Chemical Communications, 2022, 58, 9855.
21 Lakowicz J R. Principles of fluorescence spectroscopy, Springer US, USA, 2006, pp. 5.
22 Wu W, Yu X, Gao M, et al. Advanced Functional Materials, 2020, 30, 1906707.
23 Cao D, Liu Z, Verwilst P, et al. Chemical Reviews, 2019, 119, 10403.
24 Fan J, Sun W, Hu M, et al. Chemical Communications, 2012, 48, 8117.
25 He L, Dong B, Liu Y, et al. Chemical Society Reviews, 2016, 45, 6449.
26 Chen W, Yue X, Li W, et al. Sensors and Actuators B:Chemical, 2017, 245, 702.
27 Gandioso A, Bresolí-Obach R, Nin-Hill A, et al. The Journal of Organic Chemistry, 2018, 83, 1185.
28 Matikonda S S, Ivanic J, Gomez M, et al. Chemical Science, 2020, 11, 7302.
29 Murata C, Masuda T, Kamochi Y, et al. Chemical & Pharmaceutical Bulletin, 2005, 53, 750.
30 Kim D, Xuan Q P, Moon H, et al. Asian Journal of Organic Chemistry, 2014, 3, 1089.
31 Maruyama J, Ito K. Chemical & Pharmaceutical Bulletin, 1984, 32, 1178.
32 Kim H M, Fang X Z, Yang P R, et al. Tetrahedron Letters, 2007, 48, 2791.
33 Park S, Kim H J. Sensors and Actuators B:Chemical, 2012, 168, 376.
34 Piloto A M, Costa S P G, Gonçalves M S T. Tetrahedron Letters, 2005, 46, 4757.
35 Jiang H, Zhang Q, Li N, et al. Journal of Hazardous Materials, 2024, 467, 133735.
36 Banerjee S, Veale E B, Phelan C M, et al. Chemical Society Reviews, 2013, 42, 1601.
37 Duke R M, Veale E B, Pfeffer F M, et al. Chemical Society Reviews, 2010, 39, 3936.
38 Qiao Q L. Structure-fluorescence relationship of naphthallmide fluorophore and applications in biology. Ph. D. Thesis, Dalian University of Technology, China, 2017 (in Chinese).
乔庆龙. 萘酰亚胺类染料荧光构效关系研究及生物应用. 博士学位论文, 大连理工大学, 2017.
39 Zong L Y. Synthesis and property of molecules based on perylene diimides and naphthalene diimides. Ph. D. Thesis, Wuhan University, China, 2017 (in Chinese).
宗路一. 苝酰亚胺、萘酰亚胺类分子的合成与性能研究. 博士学位论文, 武汉大学, 2017.
40 Chen H, Tang Y, Shang H, et al. Journal of Materials Chemistry B, 2017, 5, 2436.
41 Uesaka T, Ishitani T, Shimeno T, et al. RSC Advances, 2022, 12, 17350.
42 Thavornpradit S, Sirirak J, Wanichacheva N. Journal of Photochemistry and Photobiology A:Chemistry, 2016, 330, 55.
43 Yan F, Fan K, Bai Z, et al. TrAC Trends in Analytical Chemistry, 2017, 97, 15.
44 Kamino S, Uchiyama M. Organic & Biomolecular Chemistry, 2023, 21, 2458.
45 Yang Y, Lowry M, Xu X, et al. Proceedings of the National Academy of Sciences, 2008, 105, 8829.
46 Azuma E, Nakamura N, Kuramochi K, et al. The Journal of Organic Chemistry, 2012, 77, 3492.
47 Wang L, Barth C W, Sibrian-Vazquez M, et al. ACS Omega, 2017, 2, 154.
48 Chen W, Xu S, Day J J, et al. Angewandte Chemie International Edition, 2017, 56, 16611.
49 Padalkar V S, Seki S. Chemical Society Reviews, 2016, 45, 169.
50 Furukawa S, Shono H, Mutai T, et al. ACS Applied Materials & Interfaces, 2014, 6, 16065.
51 Gayathri P, Ravi S, Karthikeyan S, et al. Journal of Molecular Structure, 2023, 1284, 135429.
52 Wu Y Y, Chen Y, Gou G Z, et al. Organic Letters, 2012, 14, 5226.
53 Abeywickrama C S, Li Y, Ramanah A, et al. Sensors and Actuators B:Chemical, 2022, 368, 132199.
54 Zhang X, Xiao Y, Qian X. Organic Letters, 2008, 10, 29.
55 Ong J X, Lim C S Q, Le H V, et al. Angewandte Chemie International Edition, 2019, 131, 170.
56 Lee J, Boo J, Kim Y H, et al. Talanta, 2024, 271, 125715.
57 Ueno Y, Jose J, Loudet A, et al. Journal of the American Chemical Society, 2011, 133, 51.
58 Ong J X, Ang W H. Chemistry-an Asian Journal, 2020, 15, 1449.
59 Piyanuch P, Santatiwongchai J, Impeng S, et al. Journal of Molecular Liquids, 2024, 399, 124363.
60 Zhang Z, Chasteen J L, Smith B D. The Journal of Organic Chemistry, 2024, 89, 3309.
61 Samanta P K, Misra R. Journal of Applied Physics, 2023, 133, 020901.
62 Misra R, Bhattacharyya S P. Intramolecular charge transfer:theory and application, Wiley-VCH, Germany, 2018. pp. 3.
63 Loudet A, Burgess K. Chemical Reviews, 2007, 107, 4891.
[1] 王露燕, 熊正烨, 钟国涛, 黄劲哲, 刘昊, 郭竞渊. 可调谐Y2MgTiO6:Tm3+,Dy3+荧光粉的发光特性和能量转移机理[J]. 材料导报, 2025, 39(8): 23120260-8.
[2] 杜飞跃, 周徐, 谢叔媚, 王二静, 王世敏. 兼具聚集诱导发光和激发态分子内质子转移特性的有机小分子发光体[J]. 材料导报, 2020, 34(Z1): 498-502.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed