Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060116-7    https://doi.org/10.11896/cldb.24060116
  金属与金属基复合材料 |
GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究
陈晓平1,2, 陶贤成3, 鲍听1,2, 赵宁宁1,2, 楼玉民1,2, 岳建岭3,*
1 浙江浙能技术研究院有限公司,杭州 311121
2 浙江省火力发电高效节能与污染物控制技术研究重点实验室,杭州 311121
3 中南大学粉末冶金研究院,长沙 410083
Study on the Oxidation Resistance of GH 783 Alloy and NiCoCrAlYTa Coating
CHEN Xiaoping1,2, TAO Xiancheng3, BAO Ting1,2, ZHAO Ningning1,2, LOU Yumin1,2, YUE Jianling3,*
1 Zhejiang Energy Technology Research Institute Co., Ltd., Hangzhou 311121, China
2 Key Laboratory of Energy Conservation & Pollutant Control Technology for Thermal Power of Zhejiang Province, Hangzhou 311121, China
3 Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 40601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作创新性地利用多弧离子镀技术在GH 783合金上制备了NiCoCrAlYTa涂层,通过SEM、XRD和EDX等检测手段表征了涂层的微结构,并研究了NiCoCrAlYTa涂层对GH 783合金高温氧化行为的影响。结果表明:制备的NiCoCrAlYTa涂层结构致密,厚度在30 μm左右,主要的增强相是Ni3Al,涂层结构为外层富Al、内层富Cr。涂层中的微量元素Y富集在表面有利于提高氧化膜的粘着性,Ta富集在涂层和基体界面处有利于增强涂层的结合力。NiCoCrAlYTa涂层可以减缓GH 783试样在1 000 ℃氧化的增重趋势,而且氧化速率较为稳定,同时能有效降低氧化皮的脱落量,使得材料整体的抗氧化性能由次抗氧化级别提升至抗氧化级别。NiCoCrAlYTa涂层具有优异的抗高温氧化性能,其原因是在NiCoCrAlYTa涂层制备过程中,涂层表面会生成Al2O3薄膜,这可以使NiCoCrAlYTa涂层中增强相Ni3Al保持不变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晓平
陶贤成
鲍听
赵宁宁
楼玉民
岳建岭
关键词:  高温合金  高温抗氧化性  NiCoCrAlYTa涂层  氧化动力学    
Abstract: This work innovatively utilized multi arc ion plating technology to prepare NiCoCrAlYTa coatings on GH 783 alloy. The microstructure of the coatings was characterized by SEM, XRD, and EDX detection methods, and the effect of NiCoCrAlYTa coatings on the high-temperature oxidation behavior of GH 783 alloy was studied. The results show that the prepared NiCoCrAlYTa coating has a dense structure and a thickness of about 30 μm, the main reinforcing phase is Ni3Al, and the coating structure is rich in Al on the outer layer and Cr on the inner layer. The enrichment of trace element Y in the coating on the surface is beneficial for improving the adhesion of the oxide film, while the enrichment of Ta at the interface between the coating and the substrate is beneficial for enhancing the adhesion of the coating. After adding NiCoCrAlYTa coating, the weight gain trend of GH 783 sample during oxidation at 1 000 ℃ can be slowed down, and the oxidation rate is relatively stable. It can effectively reduce the amount of oxide skin detachment, and improve the overall antioxidant performance of the material from secondary to antioxidant le-vels. The reason why NiCoCrAlYTa coating has excellent high-temperature oxidation resistance is that during the preparation process of NiCoCr-AlYTa coating, Al2O3 thin films are generated on the coating surface, which can maintain the presence of the reinforcing phase Ni3Al in the NiCoCrAlYTa coating.
Key words:  high-temperature alloy    high-temperature oxidation resistance    NiCoCrAlYTa coating    oxidation kinetics
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TB35  
基金资助: 湖南省自然科学基金(2023JJ30690);浙江省科技攻关计划(2023C01052);浙江省能源集团有限公司科技项目(ZERD-KJ-2023-004)
通讯作者:  * 岳建岭,博士,中南大学教授、博士研究生导师,主要从事材料表面改性与防护、电磁吸波与屏蔽材料、复合材料界面改性等领域的研究。jlyue2010@csu.edu.cn   
作者简介:  陈晓平,硕士,主要从事涂层防护方面的研究。
引用本文:    
陈晓平, 陶贤成, 鲍听, 赵宁宁, 楼玉民, 岳建岭. GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究[J]. 材料导报, 2025, 39(14): 24060116-7.
CHEN Xiaoping, TAO Xiancheng, BAO Ting, ZHAO Ningning, LOU Yumin, YUE Jianling. Study on the Oxidation Resistance of GH 783 Alloy and NiCoCrAlYTa Coating. Materials Reports, 2025, 39(14): 24060116-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060116  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060116
1 Zhou W L, Peng Y C, He Z Q, et al. Zhejiang Electric Power, 2019, 38(9), 43 (in Chinese).
周伟龙, 彭以超, 何志瞧, 等. 浙江电力, 2019, 38(9), 43.
2 Huang Y Q, Wang F, Peng Y C, et al. Zhejiang Electric Power, 2018, 37(5), 79 (in Chinese).
黄友桥, 王飞, 彭以超, 等. 浙江电力, 2018, 37(5), 79.
3 Duan S L. High temperature oxidation behavior of nickel base alloy and high temperature protective coating. Master's Thesis, Shenyang Ligong University, China, 2017 (in Chinese).
段绍岭. 一种镍基合金及高温防护涂层的高温氧化行为. 硕士学位论文, 沈阳理工大学, 2017.
4 Yang K H. High temperature oxidation resistance of nickel-based alloys and protective coating. Master's Thesis, Shenyang Ligong University, China, 2016 (in Chinese).
杨科慧. 镍基合金及防护涂层的高温氧化性能. 硕士学位论文, 沈阳理工大学, 2016.
5 Jiang T, Wang J G, Zhang Z B, et al. Thermal Power Generation, 2016, 45(1), 93 (in Chinese).
姜涛, 王建光, 张志博, 等. 热力发电, 2016, 45(1), 93.
6 Jia R F, Li L, Qin C P, et al. Turbine Technology, 2019, 61(1), 78 (in Chinese).
贾若飞, 李梁, 秦承鹏, 等. 汽轮机技术, 2019, 61(1), 78.
7 Ren X. High-temperature oxidation and hotcorrosion behaviors of severalhigh-temperature protective coatings. Ph. D. Thesis, Nanjing University of Science & Technology, China, 2005 (in Chinese).
任鑫. 几种高温防护涂层的高温氧化和热腐蚀行为研究. 博士学位论文, 南京理工大学, 2005.
8 Goward G W. Surface and Coatings Technology, 1998, 108, 73.
9 Rahmani K, Nategh S. Materials & Design, 2009, 30(4), 1183.
10 Wang X Y, Xin L, Wei H, et al. Corrosion Science and Protection Technology, 2013, 25(3), 175(in Chinese).
王心悦, 辛丽, 韦华, 等. 腐蚀科学与防护技术, 2013, 25(3), 175.
11 Zhou H M, Yi D Q, Xiao L R. Journal of Central South University (Science and Technology), 2007, 38(5), 830(in Chinese).
周宏明, 易丹青, 肖来荣. 中南大学学报(自然科学版), 2007, 38(5), 830.
12 Nicholls J R, Stephenson D J. Surface Engineering, 1991, 3, 134.
13 Nitin P, Padture M C, Eric H, et al. Science, 2002, 5(4), 28.
14 Nicholls J R. Journal of Management, 2000, 52, 28.
15 Smialek J G. Surface & Interface Analysis, 2001, 31, 582.
16 Luo S. Research on the protective performance of nickel based single crystal alloy MCrAlY coating. Master's Thesis, Central South University, China, 2009 (in Chinese).
罗顺. 镍基单晶合金MCrAlY涂层防护性能研究. 硕士学位论文, 中南大学, 2009.
17 He B, Li Y, Wei H, et al. Journal of Shenyang Agricultural University, 2013, 44(6), 841(in Chinese).
何波, 李莹, 韦华, 等. 沈阳农业大学学报. 2013, 44(6), 841.
18 Fan Z S, He T T. Materials Protection, 2013, 46(7), 49(in Chinese).
樊自栓, 何婷婷. 材料保护, 2013, 46(7), 49.
19 Wu F J, Li J P. Material Engineering, 1998(12), 8(in Chinese).
吴凤筠, 李建平. 材料工程, 1998(12), 8.
20 Thomas A, Taylor D, Bettridge F. Surface and Coatings Technology, 1996, 86-87(12), 9.
21 Du W. Study on the microstructure and high-temperature oxidation resis-tance of arc ion plated MCrAlY coating. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
杜伟. 电弧离子镀MCrAlY涂层的组织结构及抗高温氧化性能研究. 硕士学位论文, 昆明理工大学, 2018.
22 Longa Y, Takemoto M. Advanced Manufacturing Processes, 1995, 10(2), 217.
23 Fox P, Tatlock G J.Materials Science and Technology, 1989, 5(8), 816.
24 Ma F. Researching on high-temperature oxidation property of NiCrAlY coatings on nickel-base superalloy K465. Master's Thesis, Harbin Engineering University, China, 2012(in Chinese).
马飞. K465镍基高温合金沉积NiCrAlY涂层抗高温氧化性能研究. 硕士学位论文, 哈尔滨工程大学, 2012.
25 Xie S M. Preparation and oxidation resistance of NiCoCrAlYTa coating by arc ion plating. Master's Thesis, South China University of Technology, China, 2017(in Chinese).
谢世明. 电弧离子镀NiCoCrAlYTa涂层的制备及抗氧化性研究. 硕士学位论文, 华南理工大学, 2017.
26 Duan J L. Static oxidation behavior of superalloy GH99 and MCrAlY (Ta) (M=Ni, Co) coatings at high temperatures. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
段佳林. GH99高温合金及其MCrAlY(Ta)(M=Ni, Co)涂层静态高温氧化行为研究. 硕士学位论文, 哈尔滨工业大学, 2011.
27 Wang B, Gong J, Wang C, et al. Surface and Coatings Technology, 2002, 149(1), 168.
[1] 李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
[2] 盛红飞, 邓黎鹏, 易润华, 李海涛, 程东海, 黄斌. DD5合金钎焊前电阻焊定位界面成形及性能分析研究[J]. 材料导报, 2025, 39(9): 24030006-5.
[3] 陈泰黎, 牛凡, 徐良辉, 陈新悦, 侯枭伟, 孙奖, 司艳, 方修洋, 蔡振兵. GH4169镍基高温合金的飞秒激光制孔性能研究[J]. 材料导报, 2025, 39(9): 24020029-7.
[4] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[5] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[6] 戴浩, 韩海波, 刘湘波, 高远洋, 孙燕琼, 池金虎, 魏艳红. 单筒排气管焊接有限元模拟及工序优化研究[J]. 材料导报, 2025, 39(13): 23110187-5.
[7] 王玉瑞, 孙洪飞, 孙顺平, 王洪金, 赵凤玲, 张扬, 李小平. Nb、W合金化对电弧熔覆MoSi2涂层高温抗氧化性的影响[J]. 材料导报, 2025, 39(10): 24040229-7.
[8] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[9] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[10] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[11] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[12] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[13] 霍苗, 赵惠. 籽晶法制备高温合金单晶叶片的研究进展[J]. 材料导报, 2023, 37(17): 21120070-6.
[14] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[15] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed