Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120078-7    https://doi.org/10.11896/cldb.23120078
  金属与金属基复合材料 |
TA24合金多道次热变形行为及管材制备仿真
李冲1,2, 晏阳阳1,2, 杨祯彧3, 宋德军1,2, 胡伟民1,2, 杨胜利1,2, 田世伟3, 江海涛3,*
1 中国船舶集团有限公司第七二五研究所,河南 洛阳 471023
2 先进钛及钛合金材料技术国家地方联合工程研究中心,河南 洛阳 471023
3 北京科技大学高效轧制与智能制造国家工程研究中心,北京 100083
Multi-pass Hot Deformation Behavior and Tube Preparation Simulation of TA24 Alloy
LI Chong1,2,YAN Yangyang1,2,YANG Zhenyu3,SONG Dejun1,2,HU Weimin1,2,YANG Shengli1,2, TIAN Shiwei3, JIANG Haitao3,*
1 Luoyang Ship Material Research Institute, Luoyang 471023, Henan, China
2 National and Local Joint Engineering Research Center of Advanced Titanium and Titanium Alloy Materials Technology, Luoyang 471023, Henan, China
3 National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 9296KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究TA24钛合金的高温热变形行为以及PQF(Premium quality finishing)热连轧制备工艺,采用Gleeble-3500热模拟机对TA24钛合金进行多道次热模拟压缩实验;采用Arrhenius双曲函数构建了TA24钛合金的应变补偿本构模型,分析了TA24合金微观组织随应变速率、变形温度变化的规律;结合有限元仿真研究了PQF热连轧过程中应变场、温度场及轧制力的变化。结果表明:多道次变形时,TA24钛合金的流变应力与变形温度成反比,与应变速率成正比;随着变形温度的升高,TA24合金从(α+β)双相向β相转变,流变应力相应降低。在950 ℃变形时,应变速率变化对微观组织影响不大,均为拉长的魏氏组织。有限元分析结果显示:钛管经过奇数机架时,应变最大值出现在0°位置,最小值出现在60°位置,而偶数架次结果与之相反;钛管在0°与30°位置的径向位移在经过奇数机架时下降,偶数机架时上升,而60°位置的径向位移则呈相反的变化趋势;此外,轧制过程中轧管金属从孔型底部向辊缝处流动,整体轧制力在170~700 kN。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冲
晏阳阳
杨祯彧
宋德军
胡伟民
杨胜利
田世伟
江海涛
关键词:  TA24钛合金  热变形行为  本构模型  PQF  有限元    
Abstract: To study the high-temperature deformation behavior and the PQF (Premium quality finishing) hot rolling preparation process of TA24 alloy, the multi-pass thermal compression experiment of TA24 alloy was carried out by Gleeble-3500 thermal simulator. The strain compensation constitutive model of TA24 titanium alloy was constructed by Arrhenius hyperbolic function, and the variation of microstructure of TA24 alloy with strain rate and deformation temperature was analyzed. The changes of strain field, temperature field and rolling force during PQF hot rolling were studied by finite element simulation. The results show that the flow stress of TA24 alloy is inversely proportional to the deformation temperature and proportional to the strain rate during multi-pass deformation. With the increase of deformation temperature, TA24 alloy transforms from (α+β) phase to β phase, and the flow stress decreases accordingly. When deformed at 950 ℃, the change of strain rate has little effect on the microstructure, which is elongated Widmannstetter structure. The results of finite element analysis show that when the titanium tube passes through the odd frame, the maximum strain appears at the position of 0°, the minimum strain appears at the position of 60°, while the result of even number of frames is opposite. The radial displacement of the titanium tube at 0° position and 30° position decreases when passing through the odd frame, and increases when passing through the even frame, while the radial displacement at 60° position shows the opposite trend. In addition, the rolling metal flows from the bottom of the pass to the roll gap during the rolling process, and the overall rolling force is 170—700 kN.
Key words:  TA24 titanium alloy    hot deformation behavior    PQF    finite element
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TG335.7  
基金资助: 国家重点研发计划(2022YFB3705605;2021YFC2802702)
通讯作者:  *江海涛,北京科技大学工程技术研究院研究员、博士研究生导师。目前主要从事钛、镁、铝有色金属材料开发、材料组织与性能控制等方面的研究工作。jianght@ustb.edu.cn   
作者简介:  李冲,洛阳船舶材料研究所高级工程师。目前主要从事钛及钛合金材料制备、塑形加工等方面的研究工作。
引用本文:    
李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
LI Chong,YAN Yangyang,YANG Zhenyu,SONG Dejun,HU Weimin,YANG Shengli, TIAN Shiwei, JIANG Haitao. Multi-pass Hot Deformation Behavior and Tube Preparation Simulation of TA24 Alloy. Materials Reports, 2025, 39(2): 23120078-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120078  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120078
1 Guo K X.Heat Treatment, 2023, 38(5), 8 (in Chinese).
郭克星.热处理, 2023, 38(5), 8.
2 Li Y H, Zhang W X, Chen X L, et al.Titanium Industry Progress, 2022, 39(1), 43 (in Chinese).
李永华, 张文旭, 陈小龙, 等.钛工业进展, 2022, 39(1), 43.
3 Zhao Y H, Chang H, Li Z J, et al.Titanium Industry Progress, 2003(6), 12 (in Chinese).
赵永庆, 常辉, 李佐臣, 等.钛工业进展, 2003(6), 12.
4 Tao H, Song D J, Xu F F, et al. 2020, 35(5), 7 (in Chinese).
陶欢, 宋德军, 许飞凡, 等.材料开发与应用, 2020, 35(5), 7.
5 Yin Y C, Liu J, Zhang S F, et al.Titanium Industry Progress, 2023, 40(1), 21 (in Chinese).
尹艳超, 刘甲, 张帅锋, 等.钛工业进展, 2023, 40(1), 21.
6 Zhang H R, Niu H Z, Zang M C, et al.Materials Science and Engineering: A, 2021, 825,141902.
7 Guo K, Meng K, Miao D, et al.Materials Science and Engineering, 2019, 766, 138346.
8 Shi J X, Yu W, Dong E T.Journal of Chongqing University, 2019, 42(6), 42 (in Chinese).
史佳新, 余伟, 董恩涛.重庆大学学报, 2019, 42(6), 42.
9 Chen C, Shuang Y H, Chen J X, et al. 2023, 52(3), 959 (in Chinese).
陈晨, 双远华, 陈建勋, 等.稀有金属材料与工程, 2023, 52(3), 959.
10 Singh A K, Kumar A, Narasimhan K, et al.Journal of Materials Processing Technology, 2021, 292, 117060.
11 Zhou D D, Zeng W D, Xu J W.Rare Metal Materials and Engineering, 2020, 49(3), 1045 (in Chinese).
周大地, 曾卫东, 徐建伟.稀有金属材料与工程, 2020, 49(3), 1045.
12 Sellars C M, Tegart W J.Intemational Metallurgieal Reviews, 1972(17), 1.
13 Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15(1), 22.
14. Zang M C, Niu H Z, Yu J S, et al.Materials Science and Engineering: A, 2022, 840,142952.
15. Bhattacharyya D, Viswanathan G B, Denkenberger R, et al.Acta Materialia, 2003, 51(16), 4679.
16. Kang L, Zheng J, Xian B, et al.Journal of Physics: Conference Series, 2023, 2483(1), 012051.
17. Su Y. Hot deformation behavior of short-term servicing high-temperature titanium alloy DSTi700 and microstructure and properties of the alloy sheet.Ph.D.Thesis, Harbin Institute of Technology, China, 2021 (in Chinese).
苏宇. DSTi700短时用高温钛合金热变形行为及其板材组织性能.博士学位论文,哈尔滨工业大学, 2021.
18. Fan L S, Deng L S, Wang H S.Steel Pipe, 2022, 51(4), 69 (in Chinese).
范立生, 邓文军, 王华山.钢管, 2022, 51(4), 69.
19. Xu Z X. Finite element simulation and parametric modeling of three-roll retained mandrel continuous rolling process.Master's Thesis, Northeastern University, China, 2019 (in Chinese).
徐志祥. 三辊限动芯棒连轧过程有限元模拟及参数化建模.硕士学位论文,东北大学, 2019.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[6] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[7] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[8] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[9] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[10] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[11] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[12] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[13] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[14] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[15] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed