Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23110273-6    https://doi.org/10.11896/cldb.23110273
  无机非金属及其复合材料 |
Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能
张晓辉1, 张哲汇1, 张效华1,*, 马帅1, 岳振星2
1 陕西科技大学材料科学与工程学院,西安 710021
2 清华大学材料学院新型陶瓷与精细工艺国家重点实验室,北京 100084
Structure and Microwave Dielectric Properties of Ba5[Nb1-x(Al1/3Mo2/3)x]4O15 Ceramics
ZHANG Xiaohui1, ZHANG Zhehui1, ZHANG Xiaohua1,*, MA Shuai1, YUE Zhenxing2
1 School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 6567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 移动通信的全面快速发展迫切需要研究开发频率温度系数小的中等εr、高Q值的微波介质陶瓷新材料。本工作通过固相反应法,将(Al1/3-Mo2/3)5+引入缺位型六方钙钛矿陶瓷Ba5Nb4O15的B位,研究离子掺杂对其相组成、微结构和微波介电性能的影响。分析表明:适量的(Al1/3-Mo2/3)5+有利于Ba5Nb4O15陶瓷的致密化烧结,然而当掺入量过多时,并未完全形成固溶体,出现了第二相BaMoO4,这在一定程度上会影响陶瓷基体的微波介电性能。随着取代量的增加,Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的介电常数及Q×f值均表现出下降的趋势,但是复合取代令τf值朝负方向移动。当x=0.1时,1 385 ℃下烧结的陶瓷样品具有最优的微波介电性能:εr=37,Q×f=10 300 GHz,τf=6.5×10-6/℃。结果表明,改性的Ba5Nb4O15陶瓷介质可作为候选材料应用于高可靠性的移动通信器件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓辉
张哲汇
张效华
马帅
岳振星
关键词:  微波介质陶瓷  Ba5Nb4O15  六方钙钛矿  离子取代    
Abstract: With the comprehensive and rapid development of mobile communications, it is urgent to research and develop new microwave dielectric ceramic materials with medium εr and high Q value and low frequency temperature coefficient. In this work, (Al1/3Mo2/3)5+ were introduced into the B-site of the deficiency-type hexagonal perovskite ceramic Ba5Nb4O15 by solid-phase reaction method to investigate the effects of ion substitution on its phase composition, microstructure and microwave dielectric properties. The analysis shows that the moderate amount of (Al1/3Mo2/3)5+ substitution is favorable for the densification and sintering of Ba5Nb4O15 ceramics, however, when the doping amount is too much, the complete solid solution is not formed and the second phase BaMoO4 appears, which affects the microwave dielectric properties of the ceramic matrix to a certain extent. With increasing substitution, the dielectric constant and Q×f value of Ba5[Nb1-x(Al1/3Mo2/3)x]4O15 ceramics show a decreasing trend, but the composite substitution makes the τf value move in the negative direction. When x=0.1, the ceramic samples sintered at 1 385 ℃ have the optimal microwave dielectric properties: εr=37, Q×f=10 300 GHz, τf=6.5×10-6/℃. The experimental results show that the modified Ba5Nb4O15 ceramic dielectrics can be used as a candidate material for high-reliability mobile communication devices.
Key words:  microwave dielectric ceramic    Ba5Nb4O15    hexagonal perovskite    ionic substitution
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(52273315);陕西省教育厅科技项目(21JT003);新疆建设兵团项目(2023AB013-04);清华大学新型陶瓷与精细工艺国家重点实验室开放课题(KF202212);景德镇市科技计划项目(20192GYZD008-17);陕西省重点研发计划(2024GX-YBXM-324)
通讯作者:  *张效华,陕西科技大学材料科学与工程学院教授、博士研究生导师。目前主要从事功能陶瓷及元器件场致功能变化、微波介质的性能调控等方面的研究。zhangcity@126.com   
作者简介:  张晓辉,陕西科技大学材料科学与工程学院硕士研究生,在张效华教授的指导下进行研究。目前主要研究领域为类钙钛矿型微波介质陶瓷。
引用本文:    
张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
ZHANG Xiaohui, ZHANG Zhehui, ZHANG Xiaohua, MA Shuai, YUE Zhenxing. Structure and Microwave Dielectric Properties of Ba5[Nb1-x(Al1/3Mo2/3)x]4O15 Ceramics. Materials Reports, 2025, 39(2): 23110273-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110273  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23110273
1 Hill M D, Cruickshank D B, MacFarlane I A. Applied Physics Letters, 2021, 118(12), 120501.
2 Shehbaz M, Du C, Zhou D, et al. Applied Physics Reviews, 2023, 10(2), 021303.
3 Wang G, Fu Q Y, Zhang L, et al. Materials Rerports, 2019, 33(7), 2151 (in Chinese).
王耿, 付邱云, 张芦, 等. 材料导报, 2019, 33(7), 2151.
4 Zhang G T, Gao Y, Liu S L, et al. Materials Rerports, 2023, 37(4), 72 (in Chinese).
章国涛, 高岩, 刘书利, 等. 材料导报, 2023, 37(4), 72.
5 Ni L Z, Li L X, Du M K. Journal of Alloys and Compounds, 2020, 844, 1.
6 Zhang Y C, Huang Y W, Zhang Y M, et al. Journal of the Chinese Ceramic Society, 2021, 49(4), 618 (in Chinese).
张迎春, 黄延伟, 张远谋, 等. 硅酸盐学报, 2021, 49(4), 618.
7 Zhao F, Yue Z, Pei J, et al. Applied Physics Letters, 2006, 89(20), 202901.
8 He M. Electronic Components and Materials, 2013, 32(8), 42 (in Chinese).
何茗. 电子元件与材料, 2013, 32(8), 42.
9 Lichtenberg F, Herrnberger A, Wiedenmann K, et al. Progress in Solid State Chemistry, 2001, 29, 1.
10 Zhang C, Xiao F, Qiu H, et al. Electronic Components and Materials, 2007, 26(8), 55 (in Chinese).
张冲, 肖芬, 邱虹, 等. 电子元件与材料, 2007, 26(8), 55.
11 Zhuang H, Yue Z X, Zhao F, et al. Japanese Journal of Applied Physics, 2008, 47(6), 4658.
12 Zhao F, Zhuang H, Yue Z X, et al. Materials Letters, 2007, 61(16), 3466.
13 Li J, Zhou Y Y, Wu J N, et al. Ceramics International, 2022, 48(19), 27973.
14 Huang Q, Zheng Y, Lyu X P, et al. Electronic Components and Mate-rials, 2016, 35(1), 1 (in Chinese).
黄琦, 郑勇, 吕学鹏, 等. 电子元件与材料, 2016, 35(1), 1.
15 Ratheesh R, Sreemoolanadhan H, Sebastian M T. Journal of Solid State Chemistry, 1997, 131, 2.
16 Zhang X H, Zhang J, Xie Z K, et al. Journal of the American Ceramic Society, 2015, 98(4), 1245.
17 Jawahar I N, Sebastian M T, Mohanan P. Materials Science and Enginee-ring: B, 2004, 106(2), 207.
18 Zhang Q, Su H, Peng R, et al. Journal of the European Ceramic Society, 2022, 42(6), 2813.
19 Yang M, Zou H X, Yang H M, et al. Journal of the European Ceramic Society, 2023, 43(5), 1964.
20 Nobrega F A C, Abreu R F, Colares D d M, et al. Materials Chemistry and Physics, 2022, 289, 126478.
21 Shu G J, Dou Z M, Yu Z N, et al. Materials Rerports, 2023, 37(Z1), 131 (in Chinese).
舒国劲, 窦占明, 喻振宁, 等. 材料导报, 2023, 37(Z1), 131.
22 Huang J J, Li Y M, Sun Y, et al. Journal of the Chinese Ceramic Society, 2023, 51(4), 851 (in Chinese).
黄家俊, 李月明, 孙熠, 等. 硅酸盐学报, 2023, 51(4), 851.
23 Fang L, Liu H F, Zhang H, et al. Journal of Materials Science, 2006, 41(4), 1281.
24 Zhao F, Yue Z X, Zhang Y C, et al. Key Engineering Materials, 2007, 280-283, 9.
25 Lee C T, Chen C T, Huang C Y, et al. Japanese Journal of Applied Phy-sics, 2008, 47(6), 4634.
26 Santha N I, Sebastian M T. Journal of the American Ceramic Society, 2007, 90(2), 496.
27 Zhang P C, Li H, Chen X Q, et al. Inorganic Chemistry Frontiers, 2022, 9(17), 4442.
28 Yang X, Kyzzhibek T, Genevois C, et al. Inorganic Chemistry, 2019, 58(16), 10974.
[1] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[2] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[3] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[4] 甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
[5] 彭森, 吴孟强, 黄同成, 许建明, 周建华, 罗高峰, 余建坤, 张树人. SnO2掺杂对BMN陶瓷结构及介电性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 21-25.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed