Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 56-60    https://doi.org/10.11896/j.issn.1005-023X.2017.010.012
  材料研究 |
热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*
陈建华,张喜燕,任毅
重庆大学材料科学与工程学院, 重庆 400044
Influence of Heat Input on the TIG Welding-brazing Bonding Characteristics of AZ31B Magnesium Alloy/PRO500 Ultra-high Strength Steel
CHEN Jianhua, ZHANG Xiyan, REN Yi
College of Materials Science and Engineering, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 1261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用TIG电弧作为热源开展了AZ31B镁合金与超高强钢PRO500熔-钎连接试验,研究了不同焊接热输入条件对接头微观结构及力学性能的影响。结果表明:利用TIG电弧能够实现AZ31B镁合金/PRO500钢的有效熔-钎连接,强度可达镁合金母材的85%,接头界面区形成由Fe-Mg-O化合物、金属间化合物AlFe3相和基体Fe元素、熔敷金属中扩散过来的Mg元素等共同组成的过渡区;随着焊接电流的增大,AZ31B镁合金/PRO500钢熔-钎焊接头断裂模式由包含了延性断裂和准解理断裂的混合断裂模式转化为准解理断裂主导的脆性断裂模式,结合强度显著下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈建华
张喜燕
任毅
关键词:  热输入  镁合金  超高强钢  熔-钎焊  特性    
Abstract: Experiments of TIG welding-brazing of AZ31B magnesium alloy and PRO500 steel were carried out to investigate the effect of heat input on the microstructure and mechanical properties of lap joints. The results indicated that a effective bonding achieved between AZ31B magnesium alloy and PRO500 steel by TIG welding-brazing method. Under a optimized current process parameters, the strength of the joint could reach 85% of the Mg alloy base metal. The transition zone in the interface was formed including the formation of the Fe-Mg-O compounds, the AlFe3 intermetallic compound (IMC), and the cross diffusion of the elements Fe and Mg from the substrate. The fracture mode of AZ31B/PRO500 joint presented a mixed-rupture characteristics of quasi-cleavage and tearing at a smaller heat input. With the increase of welding current, the fracture mode changed to a brittle rupture with the lea-ding role of the quasi-cleavage fracture. Then the bonding strength decreased obviously.
Key words:  heat input    magnesium alloy    ultra-high strength steel    welding-brazing    characteristic
发布日期:  2018-05-08
ZTFLH:  TG47  
基金资助: *国家自然科学基金(51271208)
通讯作者:  张喜燕,男,1958年生,博士,教授,博士研究生导师,研究方向为金属材料加工E-mail:kehen888@163.com   
作者简介:  陈建华:男,1974年生,博士研究生,研究方向为金属材料加工E-mail:jianh_chen@163.com
引用本文:    
陈建华,张喜燕,任毅. 热输入对AZ31B镁合金/PRO500超高强钢TIG熔-钎连接特性的影响*[J]. 材料导报编辑部, 2017, 31(10): 56-60.
CHEN Jianhua, ZHANG Xiyan, REN Yi. Influence of Heat Input on the TIG Welding-brazing Bonding Characteristics of AZ31B Magnesium Alloy/PRO500 Ultra-high Strength Steel. Materials Reports, 2017, 31(10): 56-60.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.012  或          https://www.mater-rep.com/CN/Y2017/V31/I10/56
1 Maity S K, Rajak A K, Shekhar M C, et al. Development of ultra high strength steel by electroslag refining and thermomechanical treatment[J]. Trans Indian Institute Metals,2015,69(3):1.
2 Mandal P K, Kant R. Effect of microalloying elements on mechanical properties in the high strength low alloy steel[J]. J Biotechnol,2015,830-831(6):231.
3 Xi L P, Yang L, Gao X, et al. Experimental study on the welding properties of the ultra-high strength steel DomexProtect500[J]. Automobile Technol Mater,2015(7):7(in Chinese).
习吕鹏,杨丽,高翔,等.超高强钢DomexProtect500焊接性能试验研究[J].汽车工艺与材料,2015(7):7.
4 Zhang Z M, Zhang X, Wang Q, et al. Research on lightweight design of heavy vehicle transmission and action components[J]. J Mech Eng,2012,48(18):67(in Chinese).
张治民,张星,王强,等.重型车辆传动行动构件轻量化设计研究[J].机械工程学报,2012,48(18):67.
5 Yu K, Li W X, Wang R C, et al. Research, development and application of wrought magnesium alloys[J]. Chinese J Nonferrous Me-tals,2003,13(2):277(in Chinese).
余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277.
6 Zhang D F, Zhang H J, Lan W, et al. Some research progress of high-strength magnesium alloys[J]. Trans Mater Heat Treatment,2012,33(6):1(in Chinese).
张丁非,张红菊,兰伟,等.高强镁合金的研究进展[J].材料热处理学报,2012,33(6):1.
7 Schneider C, Weinberger T, et al. Characterisation of interface of steel/Mg FSW[J]. Sci Technol Welding Joining,2011,16(1):100.
8 Chen Y C, Nakata K. Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded Mg alloy and steel[J]. Mater Des,2009,30:3913.
9 Liu L, Xiao L, Feng J C, et al. The mechanisms of resistance spot welding of magnesium to steel[J]. Metall Mater Trans A:Phys Me-tall Mater Sci,2010,41:2651.
10 Zhao X, Song G, Liu L M. Microstructure of dissimilar metal joint with magnesium alloy AZ31B and steel 304 for laser-tungsten inert gas lap welding[J]. Trans China Welding Institution,2006,27(12):53(in Chinese).
赵旭,宋刚,刘黎明.镁和钢异种金属熔焊接头微观组织分析[J]. 焊接学报,2006,27(12):53.
11 Liu L M, Zhao X. Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding[J]. Mater Charact,2008,59:1279.
12 Xie L C, Chen Z H, Yu Z H. CO2 laser welding process on ZK60 magnesium alloy[J]. J Central South University:Sci Technol,2011,42(5):1332(in Chinese).
谢丽初,陈振华,俞照辉.ZK60镁合金的CO2激光焊接工艺研究[J].中南大学学报:自然科学版,2011,42(5):1332.
13 Zhang M J, Chen G Y, et al. Research on microstructure and mechanical properties of laser keyhole welding-brazing of automotive galvanized steel to aluminum alloy[J]. Mater Des,2013,45(6):24.
14 Xu C, Sheng G, Wang H, et al. Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology[J]. Sci Technol Welding Joining,2014,19:703.
15 Li L, Tan C, Chen Y, et al. Comparative study on microstructure and mechanical properties of laser welded-brazed Mg/mild steel and Mg/stainless steel joints[J]. Mater Des,2013,43:59.
16 Miao Y, Wu B, Xu X, et al. Effect of heat input on microstructure and mechanical properties of joints made by bypass-current MIG welding-brazing of magnesium alloy to galvanized steel[J]. Acta Metall Sin,2014,27(6):1038.
17 Zhao G J, Sheng G M, Wu L L, et al. Interfacial characteristics and microstructural evolution of Sn-6.5Zn solder/Cu substrate joints during aging[J]. Trans Nonferrous Metals Soc China,2012,22(8):1954.
18 Vassent J L, Marty A, Gilles B, et al. Thermodynamic analysis of molecular beam epitaxy of MgO(s) Ⅱ. Epitaxial growth of MgO la-yers on Fe(001) substrates[J]. J Cryst Growth,2000,219(4):444.
19 Pierre D, Viala J C, Peronnet M, et al. Interface reactions between mild steel and liquid Mg-Mn alloys[J]. Mater Sci Eng A,2003,349(1-2):256.
[1] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[4] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[5] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[6] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[7] 韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
[8] 刘菁, 张建, 赵波. 光电忆阻器用于突触仿生领域的研究进展[J]. 材料导报, 2024, 38(4): 22060027-10.
[9] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[10] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[11] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[12] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[13] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[14] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[15] 侯圣举, 李树国, 何超, 陈扬, 但建明, 周阳, 李相国, 吕阳. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 23120044-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed