Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 131-135    https://doi.org/10.11896/j.issn.1005-023X.2017.012.027
  计算模拟 |
基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟*
纪志永1,2, 黄智辉1,2, 袁俊生1,2, 李非1,2, 周俊奇1,2
1 河北工业大学海洋科学与工程学院, 海水资源高效利用化工技术教育部工程研究中心, 天津300130;
2 河北工业大学化工学院,化工节能过程集成与资源利用国家-地方联合工程实验室, 天津300130
Simulation of Spinel LiMn2O4 for Lithium Insertion/Extraction Based on Ion Exchange Mechanism
JI Zhiyong1,2, HUANG Zhihui1,2, YUAN Junsheng1,2, LI Fei1,2, ZHOU Junqi1,2
1 Engineering Research Center of Seawater Utilization of Ministry of Education, School of Marine Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National-Local Joint Engineering Laboratory of Chemical Energy Saving Process Integration and Resource Utilization, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 1344KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于离子交换机理,以ICSD(The Inorganic Crystal Structure Database)中LiMn2O4的结构数据为基础,利用Mate-rials Studio软件包中Visualizer模块和CASTEP模块构建并优化了尖晶石型LiMn2O4和HMn2O4以及λ-MnO2的晶体结构,并通过对比涉及各自晶体结构的系统能值、晶胞参数、键长及键角等的变化,初步验证了离子筛提锂过程是自发吸热过程;分别通过对LiMn2O4和HMn2O4添加H和Li,模拟考察了脱锂和嵌锂(即酸洗和吸附)过程中的活性原子位及H和Li的迁移轨迹,得出8a位置Li和H的离子性较强,脱锂为H置换四面体8a位置Li,并与邻近位置O形成键长约为0.098 9 nm 的O-H键;嵌锂为Li取代8a-16c-8a孔道中8a位置H的动力学过程。研究结果对锰基离子筛提锂的后续工作具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪志永
黄智辉
袁俊生
李非
周俊奇
关键词:  尖晶石  离子筛  提锂  离子交换  模拟    
Abstract: Basing on the mechanism of ion exchange and according to the structure data of LiMn2O4 in the inorganic crystal structure database (ICSD), the crystal structures of LiMn2O4, HMn2O4 and λ-MnO2 were established and optimized by the CASTEP module of Materials Studio software. The process of extracting lithium with ionic sieve was spontaneous and endothermal, which was preliminary verified through comparing the system energy, cell parameters, and bond length and angels of LiMn2O4 and HMn2O4 crystal structures. Active atom positions and migration trajectories of H and Li were simulated in LiMn2O4 and HMn2O4 crystal structure through adding H/Li. It was shown that Li or H at 8a site had strong ionicity, and O-H bond formed between the H replacing Li and the O neighboring 8a site in tetrahedron. The average O-H bond length was 0.098 9 nm. Furthermore, there was a ten-dency that H was substituted by Li in 8a-16c-8a channel crystal model, which was the process of lithium extraction from solution. The results had a certain guiding significance for further study of extracting lithium mechanism in lithium ionic sieve.
Key words:  spinel    ionic sieve    extracting lithium    ion exchange    simulation
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  O641  
  TB39  
基金资助: *天津市应用基础及前沿技术研究计划(12JCQNJC03300);河北省科学技术研究与发展计划(12276713D);国家自然科学基金(20806019);长江学者和创新团队发展计划(PCSIRT;IRT14R14)
通讯作者:  袁俊生:通讯作者,男,1961年生,博士,教授,研究方向为海水化学资源利用与环境保护 E-mail:jsyuan@hebut.edu.cn   
作者简介:  纪志永:男,1979年生,博士,教授,研究方向为吸附与功能分离材料 E-mail:jizhiyong@hebut.edu.cn
引用本文:    
纪志永, 黄智辉, 袁俊生, 李非, 周俊奇. 基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 131-135.
JI Zhiyong, HUANG Zhihui, YUAN Junsheng, LI Fei, ZHOU Junqi. Simulation of Spinel LiMn2O4 for Lithium Insertion/Extraction Based on Ion Exchange Mechanism. Materials Reports, 2017, 31(12): 131-135.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.027  或          https://www.mater-rep.com/CN/Y2017/V31/I12/131
1 Grosjean C, Minranda P H, Perriin M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry [J]. Renew Sustain Energy Rev,2012,16(3):1735.
2 Hamzaoui A H, M′nif A, Hammi H, et al. Contribution to the lithium recovery from brine [J]. Desalination,2003,158(1-3):221.
3 Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources: Relative importance of pegmatite, brine and other deposits [J]. Ore Geol Rev,2012,48:55.
4 Ji Z Y, Xu C C, Yuan J S, et al. Progress of study on spinel lithium ion sieve [J]. Chem Ind Eng Process,2005,24(12):1336(in Chinese).
纪志永, 徐长春,袁俊生, 等. 尖晶石型锂离子筛研究进展[J]. 化工进展,2005,24(12):1336.
5 Ammundsen B, Jones D J, Roziere J. Mechanism of proton insertion and characterization of the proton sites in lithium manganese spinels [J]. Chem Mater,1995,7(11):2151
6 Ammundsen B, Aitchison P B, Burns G R, et al. Proton insertion and lithium-proton exchange in spinel lithium manganese [J]. Solid State Ionics,1997,97(1-4):269.
7 Ammundsen B, Jones D J, Roziere J, et al. Ion exchange in manganese dioxide spinel: Proton, deuteron, and lithium sites determined from neutron powder diffraction data [J]. Chem Mater,1998,10(6):1680.
8 Koyanaka H, Matsubaya O, Koyanaka Y, et al. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO2 [J]. J Electroanal Chem,2003,559:77.
9 Aitchison P, Ammundsen B, Roziere J, et al. Local structure and lithium-proton ion exchange in Li1.33-x/3CoxMn1.67-2x/3O4 spinels [J]. Solid State Ionics,2005,176(7-8):813.
10 Ning L C, Wu J P, Zhou C G, et al. First principles calculation of electronic structure of spinel manganese oxide doping with transition metal [J]. Earth Sci—J China University of Geosciences,2006,31(3):317(in Chinese).
宁连才, 吴金平, 周成刚, 等. 第一原理计算过渡金属掺杂尖晶石型LiMn2O4的电子结构[J]. 地球科学——中国地质大学学报,2006,31(3):317.
11 Hu Y K, Ding J, Peng X F, et al. Molecular simulation of characteristics for water adsorption on ZSM-5 type zeolite doped by lithium ion [J]. J Chin Ceram Soc,2007,35(9):1247(in Chinese).
胡玉坤, 丁静, 彭晓峰, 等. 锂离子交换ZSM-5型分子筛中水分子吸附特性的分子模拟[J]. 硅酸盐学报,2007,35(9):1247.
12 Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys Rev B,1964,136:B864.
13 Capelle K. A bird′s-eye view of density-functional theory[J].Brazi-lian J Phys,2006,36(4A):1318.
14 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys Rev A,1965,140(4A):1133.
15 Thackeray M M. Manganese oxides for lithium batteries [J]. Prog Solid State Chem,1997,25(1):1.
16 Liu X L, Yang L X, Wu S X, et al. Spinel LiMn2O4 crystal structure and lithium ion-sieve property of H+/Li+ exchange [J]. Chin J Inorg Chem,2012,28(8):1673(in Chinese).
刘肖丽, 杨立新, 邬赛祥, 等. 尖晶石型LiMn2O4晶体结构及锂离子筛H+/Li+交换性质研究[J]. 无机化学学报,2012,28(8):1673.
17 Ammundsen B, Roziere J, Islam M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganese [J]. J Phys Chem B,1997,101(41):8156.
18 Ariza M J, Jones D J, Roziere J, et al. Muon spin relaxation study of spinel lithium manganese oxides [J]. J Phys Chem B,2003,107(24):6003.
19 Si X F, Zhang W G, He L H, et al. Thermodynamics of Li-extraction from brine using spinel LiMn2O4 [J]. Chin J Nonferr Met,2013,23(12):3410(in Chinese).
司秀芬,张伟光,何利华,等.尖晶石锰酸锂卤水提锂热力学[J].中国有色金属学报,2013,23(12):3410.
20 Ji Z Y, Yuan J S, Li X G. Synthesis and property of spinel lithium ion sieve [J]. Ion Exchange Adsorption,2006,22(4):323(in Chinese).
纪志永, 袁俊生, 李鑫钢. 锂离子筛的制备及其交换性能研究[J]. 离子交换与吸附,2006,22(4):323.
21 Wang L, Meng C G, Han M, et al. Lithium uptake in fixed pH solution by ion sieves [J]. J Colloid Interface Sci,2008,325:31.
22 Ooi K, Miyai Y, Sakakihara J. Mechanism of Li+ insertion in spinel-type manganese oxide. Redox and ion-exchange reactions [J].Langmuir,1991,7(6):1167.
23 Sato K, Poojary D M, Clearfield A, et al. The surface structure of the proton-exchanged lithium manganese oxides spinels and their lithium-ion sieve properties [J]. J Solid State Chem,1997,131(l):84.
24 Pickup D M, Simon D, Fooken M, et al. 6Li MAS NMR study of stoichiometric and chemically delithiated LixMn2O4 spinels [J]. J Mater Chem,2003,13(4):963.
25 Zhao L L, Wang R S. Preparation of MnO2(Li) and its ion exchange kinetics [J]. Acta Physico-Chimica Sinica,2003,19(10):933(in Chinese).
赵丽丽, 王榕树. 锂离子交换剂制备及交换反应动力学[J]. 物理化学学报,2003,19(10):933.
26 Yuan J S, Yin H B, Ji Z Y, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate [J]. Ind Eng Chem Res,2014,53:9889.
27 Feng Q, Kanoh H, Miyai Y, et al. Li+ extraction/insertion reactions with LiZn0.5Mn1.5O4 spinel in the aqueous phase [J]. Chem Mater,1995,7(2):379.
28 Zhao L, Jiang K X, Jiang X X, et al. Acidic washing modification of lithium ion-sieve precursor prepared with reduction-ammoniacal leaching residue of polymetallic nodules [J]. Nonferr Met,2006,58(4):33(in Chinese).
赵磊, 蒋开喜, 蒋训雄, 等. 多金属结核氨浸渣制备锂离子筛前驱体的酸洗转型[J].有色金属,2006,58(4):33.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[6] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[7] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[8] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[9] 胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
[10] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[11] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[12] 黄旭锐, 余喻天, 雷金勇, 郝敬轩, 俞传鑫, 潘军, 杨怡萍, 廖梓豪, 关成志, 王建强. 导电(Cu,Mn)3O4接触层在SOEC阳极侧的应用[J]. 材料导报, 2024, 38(8): 23040278-4.
[13] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[14] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[15] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed