Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 136-139    https://doi.org/10.11896/j.issn.1005-023X.2017.012.028
  计算模拟 |
聚酰亚胺玻璃化转变的动力学模拟*
杨明君, 邓彬彬, 马占
西南石油大学材料科学与工程学院, 成都 610500
A Molecular Dynamics Simulation of Polyimide Glass Transition
YANG Mingjun, DENG Binbin, MA Zhan
School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚酰亚胺具有许多优异的性能,因此在工业中得到了广泛应用。目前对聚酰亚胺玻璃化转变的研究都局限于实验法,但由于实验条件的限制如高温、高压等,通过实验方法难以得到实验数据,影响人们对聚酰亚胺玻璃化转变的认识。利用Materials Studio v7.0对聚酰亚胺玻璃化转变进行模拟,计算出4种不同聚酰亚胺在不同温度下的密度,从而得到比体积与温度关系图,再根据Fox和Flory提出的自由体积理论得到聚酰亚胺的玻璃化转变温度。模拟计算出的玻璃化转变温度与实验值基本一致,表明可以通过动力学模拟研究聚酰亚胺玻璃化转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨明君
邓彬彬
马占
关键词:  聚酰亚胺  玻璃化转变温度  分子动力学模拟    
Abstract: Due to their excellent properties such as excellent thermal stability, environmental resistance, good mechanical strength and so forth, polyimides are used in a wide range of field. Polyimides have attracted much attention for the past few years. Glass transition temperature (Tg) directly influence the usage temperature of polyimides. Therefore the study of Tg is significant for production and utilization of polyimides. So far, experimental study is the most common method to measure the Tg of polyimide. However, there are many shortcomings including operation error and instrument error. In this work, the molecular dynamics simulation was employed to predict Tg for polyimides with different structure. At first, the amorphous cell model of polyimide was built up with AC module in Materials Studio, and then the simulation was performed in NPT ensemble at 425-650 K. Finally, the specific volume was sketched out as function of temperature, and the least-square method was used to obtain the Tg.
Key words:  polyimide    glass transition temperature    molecular dynamics simulation
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  O631.1+1  
基金资助: *西南石油大学引进人才项目(201331010015)
作者简介:  杨明君:男,1976年生,博士后,教授,主要从事生物材料分子动力学模拟研究 E-mail:779464426@qq.com
引用本文:    
杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
YANG Mingjun, DENG Binbin, MA Zhan. A Molecular Dynamics Simulation of Polyimide Glass Transition. Materials Reports, 2017, 31(12): 136-139.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.028  或          https://www.mater-rep.com/CN/Y2017/V31/I12/136
1 Li C F. Relation between structure and its thermal property of po-lyimides[J]. Chemical Propellants Polym Mater,2004,2(6):24(in Chinese).
李赤峰. 聚酰亚胺的结构与其热性能的关系[J].化学推进剂与高分子材料,2004,2(6):24.
2 Li S Z. Market statue and future of polyimides[J].New Chem Mater, 1999,27(11):12(in Chinese).
李生柱. 聚酰亚胺的现状和将来[J].化工新型材料,1999,27(11):12.
3 Wang X C, Gao S Q, Zhang Y L, et al. Advanced high temperature resistant polyimide composites[J]. Insulating Mater,2001,34(4):16(in Chinese).
王晓春, 高生强, 张一力, 等.耐高温聚酰亚胺复合材料[J]. 绝缘材料,2001,34(4):16.
4 Li L, Ma Y, Xie J, et al. Metallization process of a polyimide surface with palladium-free activation for electronic field applications[J]. J Electron Mater,2015,44(10):4042.
5 Spechler J A, Koh T W, Herb J T, et al. A transparent, smooth, thermally robust, conductive polyimide for flexible electronics[J]. Adv Funct Mater,2015,25(48):7428.
6 Li L, Ma Y, Gao G, et al. Pretreatment and deposition process of electroless Ni plating on polyimide film for electronic field applications[J].Colloids Surf A:Physicochem Eng Aspects,2015,477(1):42.
7 Fan L L, Dai P B, Lu Y Q. Preparation and properties of biphenyl polyimide resistive random access memory[J]. Insulating Mater,2016,49(3):29(in Chinese).
范丽丽, 戴培邦, 卢悦群. 一种联苯型聚酰亚胺阻变存储器的制备及性能[J]. 绝缘材料,2016, 49(3):29.
8 Zhou Y,Chen Y,Wang H, et al. Creation of a multilayer aluminum coating structure nanoparticle polyimide filler for electronic applications[J]. Mater Lett,2014,119(1):64.
9 Sápi A, Rémiás R, Kónya Z, et al. Characterization of electronic transitions in polyimide films based on spectral variations induced by hydrostatic pressures up to 400 MPa[J]. J Phys Chem B,2009,113(26):8835.
10 Sun M,Chang J,Tian G,et al. Preparation of high-performance po-lyimide fibers containing benzimidazole and benzoxazole units[J].J Mater Sci,2016,51(6):2830.
11 Hu J C. Characterization of polyimide ultra-fine non-woven fabric-films prepared by electro-spinning[J]. China Elastomerics,2009,19(1):35(in Chinese).
胡建聪. 高压静电纺丝法制备聚酰亚胺超细纤维无纺布膜[J].弹性体,2009,19(1):35.
12 Serbezeanu D, Popa A M, Stelzig T, et al. Preparation and characterization of thermally stable polyimide membranes by electrospinning for protective clothing applications[J]. Textile Res J,2015,85(17):1763.
13 Barzic A I, Stoica I, Popovici D, et al. An insight on the effect of rubbing textile fiber on morphology of some semi-alicyclic polyimides for liquid crystal orientation[J]. Polym Bull,2013,70(5):1553.
14 Gong Q, Zheng X, Gong S, et al. Synthesis of novel soluble rubbing-resistant polyimides used as liquid crystal vertical alignment la-yers[J]. Liquid Crystals,2015,43(1):1.
15 Wang S L, Zhang Q, Sun Z, et al. Preparation of soluble polyimide and its potential application in liquid crystal displays[J]. Acta Polym Sin,2009,52(6):566(in Chinese).
王守廉, 张芹, 孙振, 等. 可溶性聚酰亚胺的制备及其在液晶显示器上的潜在应用[J]. 高分子学报,2009,52(6):566.
16 Xia S, Yi L, Sun Z, et al. Synthesis and characterisation of rubbing-resistant polyimides with naphthalimide side-chain for liquid-crystal alignment layers[J]. Liquid Crystals, 2013,40(6):756.
17 Hwang S J, Chen T A, Lin K R, et al. Ultraviolet-light-treated polyimide alignment layers forpolarization-independentliquidcrystal Fresnel lenses[J].Appl Phys B,2012,107(1):151.
18 Li Z S ,Zhao Y J, Jia X N, et al. Development of molecular dyna-mics computer simulation[J]. Mechan Management Development,2008,23(2):174(in Chinese).
李卓谡,赵玉洁,贾晓娜,等.分子动力学计算机模拟技术进展[J].机械管理开发,2008,23(2):174.
19 金日光,化幼卿.高分子物理[M].北京:化学工业出版社,2006:135.
20 陈敏伯.计算化学:从理论化学到分子模拟[M].北京:科学出版社,2009:51.
21 Jawalkar S S,Adoor S G, Sairam M, et al.Molecular modeling on the binary blend compatibilityofpoly(vinylalcohol)andpoly(methylmethacrylate):An atomistic simulation and thermodynamic approach[J]. J Phys Chem B,2005,109(32):15611.
22 Wang Y H, Li P, Sun Q, et al. prediction the glass transition temperature of pet by molecular dynamics simulation[J]. J Qufu Normal University:Nat Sci,2014,40(1):74(in Chinese).
王玉花, 李平, 孙巧, 等. 聚对苯二甲酸乙二醇酯的玻璃化转变行为的分子动力学模拟[J]. 曲阜师范大学学报:自然科学版,2014,40(1):74.
23 Li G Z,Shen Y X,Zhan M S.Study on performance of thermal insulation of aromatic polyimide foams[J]. J Mater Eng,2009,37(7):43(in Chinese).
李光珠,沈燕侠,詹茂盛.芳香族聚酰亚胺泡沫的隔热性能研究[J]. 材料工程,2009,37(7):43.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[5] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[6] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[7] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[8] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[9] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[10] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 陈营, 魏燕红, 陈德平, 周红梅. 支化度对TAP-BFDA聚酰亚胺的性能影响研究[J]. 材料导报, 2022, 36(23): 21030027-5.
[13] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[14] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[15] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed