Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 65-71    https://doi.org/10.11896/j.issn.1005-023X.2017.016.014
  材料研究 |
低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响
鲍贤勇1,2, 张峰2, 鲁忠臣3, 曾美琴1, 朱敏1
1 华南理工大学材料科学与工程学院, 广州 510640;
2 飞亚达(集团)股份有限公司, 深圳 518057;
3 华南理工大学机械与汽车工程学院,广州 510640
Effect of Low Pressure Sintering Temperature on Microstructure and Mechanical Performance of Ultrafine WC-Co Based Hard Metals Prepared by One-step Method
BAO Xianyong1,2, ZHANG Feng2, LU Zhongchen3, ZENG Meiqin1, ZHU Min1
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Fiyta Holdings LTD, Shenzhen 518057;
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 2533KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子球磨技术制得W-C-10Co-0.9VC-0.3Cr3C2纳米复合粉体,并利用单向模压成型法将其压制成生坯,再经低压烧结一步法制备成硬质合金。研究表明,等离子球磨3 h所获得的复合粉体呈片层状形貌,并且成分分布均匀。在1 380 ℃及1 400 ℃烧结时,由于等离子球磨的特殊作用,VC、Cr3C2对WC晶粒长大抑制作用突显。1 380 ℃烧结制备的硬质合金,致密度为99.2%,WC平均晶粒尺寸为250 nm,硬度和横向断裂强度分别为92.3HRA和2 443 MPa,具有最佳的WC晶粒尺寸与致密度配合,以及最佳的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍贤勇
张峰
鲁忠臣
曾美琴
朱敏
关键词:  等离子球磨  碳化烧结一步法  低压烧结  烧结温度  力学性能    
Abstract: W-C-10Co-0.9VC-0.3Cr3C2 nano composite powders were prepared by plasma milling (P-milling), and subsequently compressed into green compacts with a uniaxial pressure, then the green compacts were carbonized and sintered in a one-step me-thod by low pressure sintering technology. The analysis results indicate that the homogeneous and lamellar structure composite powder is achieved by P-milling for 3 h. Due to the special effect of P-milling, VC and Cr3C2 begin to play a role of inhibition to WC grain size at the temperature of 1 380 ℃ and 1 400 ℃. Among them, the hard metals that sintered at 1 380 ℃ exhibit the optimum combination of WC grain size and relative density, and the best mechanical performance simultaneously. The density of hard metal is 99.2% with 250 nm of mean WC grain size, and the hardness and transverse rupture strength reach up to 92.3HRA and 2 443 MPa, respectively.
Key words:  plasma milling    carbonizing and sintering by one-step    low pressure sintering    sintering temperature    mechanical performance
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TF125  
作者简介:  鲍贤勇:男,1974年生,博士研究生,研究方向为高性能硬质合金及金属陶瓷等 E-mail:baoxy@fiyta.com.cn 朱敏:男,1962年生,教授,博士研究生导师,研究方向为高性能纳米金属材料等 E-mail:memzhu@scut.edu.cn
引用本文:    
鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
BAO Xianyong, ZHANG Feng, LU Zhongchen, ZENG Meiqin, ZHU Min. Effect of Low Pressure Sintering Temperature on Microstructure and Mechanical Performance of Ultrafine WC-Co Based Hard Metals Prepared by One-step Method. Materials Reports, 2017, 31(16): 65-71.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.014  或          https://www.mater-rep.com/CN/Y2017/V31/I16/65
1 Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J]. Int J Refract Met Hard Mater,2009,27(2):288.
2 Wang X, Fang Z Z, Sohn H Y. Grain growth during the early stage of sintering of nanosized WC-Co powder[J]. Int J Refract Met Hard Mater,2008,26(3):232.
3 Wang H, Zeng M Q, Liu J W, et al. One-step synthesis of ultrafine WC-10Co hardmetals with VC/V2O5 addition by plasma assisted milling[J]. Int J Refract Met Hard Mater,2015,48:97.
4 Bonache V, Salvador M D, Fernández A, et al. Fabrication of full density near-nanostructured cemented carbides by combination of VC/Cr3C2 addition and consolidation by SPS and HIP technologies[J]. Int J Refract Met Hard Mater,2011,29(2):202.
5 Ren X Y, Peng Z J, Wang C B, et al. Effect of ZrC nano-powder addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering[J]. Int J Refract Met Hard Mater,2015,48:398.
6 Xiao D H, He Y H, Song M, et al. Y2O3-and NbC-doped ultrafine WC-10Co alloys by low pressure sintering[J]. Int J Refract Met Hard Mater,2010,28(3):407.
7 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders[J]. Int J Refract Met Hard Mater,2009,27(4):801.
8 Morton C W, Wills D J, Stjernberg K. The temperature ranges for maximum effectiveness of grain growth inhibitors in WC-Co alloys[J]. Int J Refract Met Hard Mater,2005,23(4-6):287.
9 Poetschke J, Richter V, Holke R. Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide[J]. Int J Refract Met Hard Mater,2012,31:218
10 朱敏, 戴乐阳, 曹彪, 等. 一种等离子体辅助高能球磨方法: 中国,200510036231.9[P].2006.
11 Zhu M, Lu Z C, Hu R Z, et al. Dielectric barrier discharge plasma assisted ball milling technology and its apllication in materials fabrication[J]. Acta Metall Sinica,2016(10):1239(in Chinese).
朱敏, 鲁忠臣, 胡仁宗, 等. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用[J]. 金属学报,2016(10):1239.
12 Yang X P. Improving the plasma-assisted ball mill and optimizing the fabrication process of nano-composite WC-10Co powder[D]. Guangzhou: South China University of Technology,2010(in Chinese).
杨小平. 等离子体辅助球磨设备改进及纳米WC-10Co粉体制备工艺优化[D]. 广州:华南理工大学,2010.
13 朱敏, 靳磊, 顾南山, 等. 一种WC-Co硬质合金的制备方法: 中国,200810028403.1[P].2008-05-30.
14 Ding Y. Microstructure control and properties of WC-Co based ultrafine hardmetals prepared by one-step method[D]. Guangzhou: South China University of Technology,2013(in Chinese).
丁勇. 一步法制备超细WC-Co基硬质合金的组织控制及性能[D]. 广州:华南理工大学,2013.
15 Zhu M, Bao X Y, Yang X P, et al. A novel method for direct synthesis of WC-Co nanocomposite powder[J]. Metall Mater Trans A,2011,42(9):2930.
16 Zhu M, Dai L Y, Gu N S, et al. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide[J]. J Alloys Compd,2009,478(1-2):624.
17 Upadhyaya G S, Bhaumik S K. Sintering of submicron WC-10wt.%Co hard metals containing nickel and iron[J]. Mater Sci Eng A,1988,105:249.
18 Wei C B, Song X Y, Zhao S X, et al. Synthesis of WC-Co composite powder by reduction and carbonization reactions and its densification[J]. Mater Sci Eng Powder Metall,2010(2):145(in Chinese).
魏崇斌, 宋晓艳, 赵世贤, 等. 超细WC-Co复合粉的原位反应合成及烧结致密化[J]. 粉末冶金材料科学与工程,2010(2):145.
19 Liu W B, Song X Y, Zhang J X, et al. A novel route to prepare ultrafine-grained WC-Co cemented carbides[J]. J Alloys Compd,2008,458(1-2):366.
20 Shi Z H. Fabrication of WC-Co hardmetal added with grain growth inhibitor by carbonizing and sintering in one step[D]. Guangzhou: South China University of Technology,2011(in Chinese).
施振华. 含晶粒长抑制剂的WC-Co硬质合金直接法制备[D]. 广州:华南理工大学,2011.
21 Jia K, Fischer T E, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites [J]. Nanostruct Mater,1998,10(5):875.
22 Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites [J]. J Mater Sci,2010,46(3):571.
23 Zhao S X, Song X Y, Liu X M, et al. Quantitative relationships between micro-struture parameters and mechanical properties of ultrafine cemeted carbides[J]. Acta Metall Sinca,2011(9):1188(in Chinese).
赵世贤, 宋晓艳, 刘雪梅, 等. 超细晶硬质合金显微组织参数与力学性能定量关系的研究[J]. 金属学报,2011(9):1188.
24 Song X Y, Zhao S X, Liu X M, et al. Stereological chracterizations of microstructure and frature path in ultrafine hard alloys[J]. Chinise J Stereology Image Analysis,2011(2):131(in Chinese).
宋晓艳, 赵世贤, 刘雪梅, 等. 超细晶硬质合金显微组织与断裂路径的体视学表征研究[J]. 中国体视学与图像分析,2011(2):131.
25 Zhang F. The preparation of WC-8Co hardmetal by one-step method and its cutting performance[D]. Guangzhou: South China University of Technology,2015(in Chinese).
张峰. WC-8Co硬质合金的一步法制备及切削性能[D]. 广州:华南理工大学,2015.
26 Wei C B, Song X Y, Fu J, et al. Microstructure and properties of ultrafine cemented carbides-Differences in spark plasma sintering and sinter-HIP[J]. Mater Sci Eng A,2012,552:427.
27 Li X F, Liu Y, Wei W, et al. Influence of NbC and VC on microstructures and mechanical properties of WC-Co functionally graded cemented carbides[J]. Mater Des,2016,90:562.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed