Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 11-16    https://doi.org/10.11896/j.issn.1005-023X.2017.020.003
  材料研究 |
铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响*
陈毓焘, 李文晓, 金世奇
同济大学航空航天与力学学院,上海 200092
Shape Recovery Properties of Carbon Fiber/Shape Memory Epoxy Resin Laminates with Diverse Ply Angles
CHEN Yutao, LI Wenxiao, JIN Shiqi
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092
下载:  全 文 ( PDF ) ( 1839KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对不同铺层角度的碳纤维/环氧树脂形状记忆复合材料(SMC)层合板的弯曲回复性能进行了研究。结果表明,[±θ]s铺层方式的SMC层合板的形状回复率、回复力均随着铺层角度增大而减小,回复时间随着铺层角度增大而增大,其中铺层角度增大至45°后,回复时间开始出现大幅的增加,铺层角度增大至60°后,回复率开始出现大幅的降低。对SMC层合板进行了15次的赋形-回复循环过程,发现不同铺层角度SMC层合板均能保持较稳定的形状记忆回复率和回复时间。但在铺层角度0~30°的范围内,层合板的形状回复力随着铺层角度增大而减小。最后分析了不同铺层角度SMC层合板的局部损伤,结果表明,[0]4和[±15]s铺层方式的SMC层合板基体已达到了其极限剪切应变,基体发生严重破坏,并且会随着赋形次数的增加而加剧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈毓焘
李文晓
金世奇
关键词:  形状记忆复合材料(SMC)  环氧树脂  碳纤维  层合板  铺层角度  回复率  回复力  损伤    
Abstract: The performances of flexural recovery and the local damage of the shape memory composite (SMC) laminates, which were composed of epoxy resin matrix and carbon fiber reinforcement, and differed in ply orientation, were studied. The research showed that the recovery ratio and force of [±θ]s laminates decrease with the increase of ply angle, while the recovery time increases. The recovery time rises substantially when the ply angle reaches 45°, and the recovery ratio begins to reduce substantially when the ply angle reaches 60°. The recovery ratio and recovery time of the SMC laminates changed little during 15 cycles bending-recovering process, but the recovery force decreases gradually with the ply angle increasing from 0° to 30°. Finally, the local damage of laminates was analyzed. The result shows that the matrix of [0]4 and [±15]s laminates has reached ultimate shear strain and been badly damaged, and the damage will be worse with the increase of shaping times.
Key words:  shape memory composite (SMC)    epoxy resin    carbon fiber    laminate    ply angle    recovery ratio    recovery force    damage
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB333  
基金资助: *上海市空间飞行器机构重点实验室开放课题资助项目
作者简介:  陈毓焘:男,1990年生,硕士研究生,主要从事先进复合材料方面的研究 李文晓:通讯作者,女,1968年生,博士,副教授,硕士研究生导师,主要从事先进复合材料、耐高温泡沫等方面的研究 E-mail:1433480@tongji.edu.cn; wenxiaoli@tongji.edu.cn
引用本文:    
陈毓焘, 李文晓, 金世奇. 铺层角度对碳纤维/形状记忆环氧树脂层合板形状回复性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 11-16.
CHEN Yutao, LI Wenxiao, JIN Shiqi. Shape Recovery Properties of Carbon Fiber/Shape Memory Epoxy Resin Laminates with Diverse Ply Angles. Materials Reports, 2017, 31(20): 11-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.003  或          https://www.mater-rep.com/CN/Y2017/V31/I20/11
1 Yang J H, Chun B C, Chung Y, et al. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment[J]. Polymer, 2003,44(11):3251.
2 Lin J, Knoll C, Willey C. Shape memory rigidizable inflatable (RI) structures for large space systems applications [C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island, 2006.
3 Leng J, Xin L, Liu Y, et al. Shape-memory polymers and their composites: Stimulus methods and applications [J]. Prog Mater Sci, 2011,56(7):1077.
4 Luo P. Preparation and research on shape memory epoxy resin [D]. Qinhuangdao: Yanshan University, 2012(in Chinese).
罗棚. 形状记忆环氧树脂的制备与性能研究[D]. 秦皇岛: 燕山大学, 2012.
5 Chen Qing. Design of deployable antenna based on shape memory polymer composites [D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
程清. 基于形状记忆复合材料的展开天线设计[D]. 哈尔滨:哈尔滨工业大学, 2011.
6 Chen Qiaofeng,Li Wenxiao,Fang Guangqiang, et al. Effects of ply angles on properties of shape memory composite laminates [J]. Eng Plast Appl, 2014(4):40(in Chinese).
陈巧峰,李文晓,房光强,等. 铺层角度对形状记忆复合材料层合板性能的影响[J]. 工程塑料应用, 2014(4):40.
7 Shi Han. Study on the two-stage curing technology of a new shape memory epoxy resin [D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
石晗. 新型形状记忆环氧树脂的二次固化研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
8 Mao Y, Robertson J M, Mu X, et al. Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change [J]. J Mech Phys Solids, 2015,85:219.
9 Nishikawa M, Wakatsuki K, Yoshimura A, et al. Effect of fiber arrangement on shape fixity and shape recovery in thermally activated shape memory polymer-based composites [J]. Composites Part A, 2012,43(1):165.
10Xiong Zhiyuan. A study on packaging deformation mechanism of elastic memory composites [D]. Beijing: Beijing Jiaotong University,2010(in Chinese).
熊志远. 形状记忆聚合物复合材料折叠变形机理的研究[D]. 北京: 北京交通大学, 2010.
11Broughton W R. Mechanical testing of advanced fibre composites [M]. Woodhead: CRC Press, 2000.
12Lake M, Munshi N, Meink T, et al. Application of elastic memory composite materials to deployable space structures[C]∥AIAA Space 2001 Conference and Exposition. AIAA 2001.
13Francis W, Lake M, Mayes J S. A review of classical fiber microbuckling analytical solutions for use with elastic memory composites [C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island, 2006.
14Lan X, Liu Y, Leng J. Shape recovery mechanics of fiber-reinforced shape-memory polymer composite [C]∥Proceedings of SPIE-The International Society for Optical Engineering, 2010.
15Kim B K, Sang Y L, Mao X. Polyurethanes having shape memory effects [J]. Polymer,1996, 37(26):5781.
16Yu K, Ge Q, Qi H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers [J]. Nat Commun,2014,5:3366.
17Lai Xueping. Study on preparation and performance of shape memory epoxy resin [D]. Harbin: Harbin Institute of Technology, 2007(in Chinese).
赖学平. 形状记忆环氧树脂的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007
18Maji A K, Lips J A, Azarbayejani M. Measurement and analytical modeling of the deployment rate of elastic memory composites [J]. Experim Mech, 2012,52(7):717.
19Campbell D, Lake M, Scherbarth M, et al. Elastic memory composite material: An enabling technology for future furlable space structures[C]∥Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2005.
20Lips J, Maji A K, Ng T T. Deployment rate prediction of elastic memory composites [C]∥46th AIAA/ASME/ASCE /AHS/ASC Structures, Structural Dynamics and Materials Conference.Austin, Texas,American,2005.
21Campbell D, Maji A K. Failure mechanisms and deployment accuracy of elastic memory composites [J]. J Aerosp Eng, 2006,19(3):184.
22Xiong Zhiyuan, Wang Zhengdao, Li Yuzhang, et al. Judgment of in-plane/out-of-plane microbuckling mode for packaged unidirectional EMC laminates[J]. Eng Mech,2010(6):183(in Chinese).
熊志远,王正道,李豫彰,等. 单向EMC层合板折叠变形时面内/面外屈曲形式的判据[J]. 工程力学, 2010(6):183.
23Wang Z D, Li Z F, Wang Y S. Microbuckling solution of elastic memory laminates under bending[J]. J Intell Mater Syst Struct, 2009,20(13):1565.
[1] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[2] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[3] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[4] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[7] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[8] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[11] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[12] 毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
[13] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[14] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[15] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed