Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 81-86    https://doi.org/10.11896/j.issn.1005-023X.2017.015.012
  材料综述 |
Al-Ti-Mg复合脱氧钢研究进展*
刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒
武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081;
Research Progress on Al-Ti-Mg Complex Deoxidized Steels
LIU Linli, HOU Yanhui, LIU Yang, LI Bosi, MIN Liang, QIAN Baoshu
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081;
下载:  全 文 ( PDF ) ( 1671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢铁冶炼过程中脱氧问题是决定钢材质量的关键环节。在对氧化物冶金可利用的脱氧产物的研究中,Ti、Mg对钢的复合脱氧形成的氧化物夹杂更加分散,具有很好的脱氧效果。针对Al-Ti-Mg复合脱氧钢,从合金的制造、夹杂物形成机理、晶粒结构、力学性能、夹杂物对铁素体形核的影响等方面的研究进展进行了综述,提出了当前Al-Ti-Mg复合脱氧技术还处于未完善阶段,仍存在许多问题亟待解决,并为未来冶金领域研究工作者进一步探索与研究提供了方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘林利
侯延辉
刘洋
李博思
闵梁
钱宝舒
关键词:  Al-Ti-Mg复合脱氧钢  夹杂物的形成机理  力学性能    
Abstract: Deoxidation in steel smelting process is the key process to determine the quality of steel. In the research of the deoxidation products which can be used in the oxide metallurgy, Ti and Mg oxide inclusions formed by the compound deoxidation of the steel are more dispersed. In this paper, alloy manufacturing, inclusion formation mechanism, crystal structure, mechanical pro-perties and the effect of inclusions on the ferrite nucleation in Al-Ti-Mg composite deoxidized steel are summarized. The problems to be solved in Al-Ti-Mg composite deoxidized steel are put forward, and the direction for researchers to further explore and research field of metallurgy are provided.
Key words:  Al-Ti-Mg killed steels    forming mechanism of deoxidizing inclusion    mechanical property
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TF111.15+2  
基金资助: *教育部博士点基金(20133719120005); 教育部留学回国人员科研启动基金
作者简介:  刘林利:男,1992年生,硕士,研究方向为Ti、Mg复合脱氧钢,核壳纳米材料 E-mail:liulinli83410928@126.com 侯延辉:通讯作者,女,1981年生,博士,副教授,硕士研究生导师,研究方向为氧化物冶金,电-磁转换材料 E-mail:houyanhui@wust.edu.cn
引用本文:    
刘林利, 侯延辉, 刘洋, 李博思, 闵梁, 钱宝舒. Al-Ti-Mg复合脱氧钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 81-86.
LIU Linli, HOU Yanhui, LIU Yang, LI Bosi, MIN Liang, QIAN Baoshu. Research Progress on Al-Ti-Mg Complex Deoxidized Steels. Materials Reports, 2017, 31(15): 81-86.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.012  或          https://www.mater-rep.com/CN/Y2017/V31/I15/81
1 Ogibayashi S. The features of oxides in Ti-deoxidized steel[C]// Proceedings of the Sixth International Iron and Steel Congress, ISIJ International. Nagoya, 1990:612.
2 Babu S S, David S A. Inclusion formation and microstructure evolution in low alloy steel welds[J]. ISIJ Int,2002, 42(12):1344.
3 Sha Q Y, Sun Z Q. Grain growth behavior of coarse-grained auste- nite in a Nb-V-Ti microalloyed steel[J]. Mater Sci Eng A,2009,523:77.
4 Furuhara T, Shinyoshi T, Miyamoto G, et al. Multiphase crystallography in the nucleation of intragranular ferrite on MnS+V(C, N) complex precipitate in austenite[J]. ISIJ Int,2003,43(12):2028.
5 Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. Trans Iron Steel Inst Jpn,2009, 49(7):1063.
6 Ohta H, Suito H. Dispersion behavior of MgO, ZrO2, Al2O3, CaO-Al2O3 and MnO-SiO2 deoxidation particles during solidification of Fe-10wt%Ni alloy[J]. ISIJ Int,2006,46(1):22.
7 Hu C L, Song B, Xin W B, et al. Effect of Ti-Mg composite deoxidization on inclusions in low carbon steel and organization[J]. Trans Mater Heat Treat,2013,34(5):37(in Chinese).
胡春林, 宋波, 辛文彬,等. Ti-Mg复合脱氧对低碳钢中夹杂物及组织的影响[J]. 材料热处理学报,2013,34(5):37.
8 Song Y, Li G Q, Yang F. Effect of Al-Ti-Mg composite deoxidization on inclusions in steel and organization[J]. Chinese J Eng,2011,33(10):1214(in Chinese).
宋宇, 李光强, 杨飞. Al-Ti-Mg复合脱氧对钢中夹杂物及组织的影响[J]. 工程科学学报,2011, 33(10):1214.
9 Saxena S K. Refining reaction of magnesium in steel at steelmaking temperature[C]//Proceedings International Symposium on the Phy-sical Chemistry of Iron and Steel Making. Toronto, 1982: 17.
10 Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking Steelmaking,2011,38(8):577.
11 Chang C H, Jung I H, Park S C, et al. Effect of Mg on the evolution of non-metallic inclusions in Mn-Si-Ti deoxidised steel during solidification: Experiments and thermodynamic calculations[J]. Ironmaking Steelmaking, 2005,32(3):251.
12 Ono H, Nakajima K, Maruo R, et al. Formation conditions of Mg2TiO4 and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. ISIJ Int,2009, 49(7):957.
13 Ono H, Ibuta T. Equilibrium relationships between oxide compounds in MgO-Ti2O3-Al2O3 with iron at 1873 K and variations in stable oxides with temperature[J]. ISIJ Int,2011,51(12):2012.
14 Ono H, Nakajima K, Ibuta T, et al. Equilibrium relationship between the oxide compounds in MgO-Al2O3-Ti2O3 and molten iron at 1873 K[J]. ISIJ Int,2010,50(12):1955.
15 Ono H, Nakajima K, Agawa S, et al. Formation conditions of Ti2O3, MgTi2O4, Mg2TiO4, and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron[J]. Steel Res Int,2009,86(3):24.
16 Tae-Kyu L, Kim H J, et al. Effect of inclusion size on the nucleation of acicular ferrite in welds[J]. ISIJ Int,2000,40(12):1260.
17 Han S K, Chang C H, Lee H G. Evolution of inclusions and resul-tant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Mater,2005,53(11):1253.
18 Chai F, Yang C F, Su H, et al. Effect of magnesium on inclusions formation in Ti-killed steels and microstructural evolution in welding induced coarse grianed heat affected zone[J]. J Iron Steel Res Int,2009,16(1):69.
19 Song M M, Song B, Hu C L, et al. Effect of Ti-Mg composite solid on the microstructure and impact properties of heat affected zone of steel[J]. J Eng Sci, 2015,37(7):883(in Chinese).
宋明明, 宋波, 胡春林,等. Ti-Mg复合脱氧对钢热影响区组织和冲击性能的影响[J]. 工程科学学报,2015, 37(7):883.
20 Zheng W. Al-Ti-Mg(Ca) composite solid against the large deformation of pipeline steel inclusion, the influence of the organization and performance of the steel research [D].Wuhan: Wuhan University of Science and Technology,2014(in Chinese).
郑万. Al-Ti-Mg(Ca)复合脱氧对抗大变形管线钢中的夹杂物、钢的组织及性能的影响研究[D]. 武汉:武汉科技大学,2014.
21 Hou Y H, Zheng W, Wu Z H, et al. Study of Mn absorption by complex oxide inclusions in Al-Ti-Mg killed steels[J]. Acta Mater,2016,118:8.
22 Wang C, Nuhfer N T, Sridhar S. Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: Effect of titanium/aluminum ratio[J]. Metall Mater Trans B,2009,40(6):1022.
23 Ohta H, Suito H. Characteristics of particle size distribution of deoxidation products with Mg, Zr, Al, Ca, Si/Mn and Mg/Al in Fe-10mass%Ni alloy[J]. ISIJ Int,2006,46(1):14.
24 Suito H, Ohta H. Characteristics of particle size distribution in early stage of deoxidation[J]. ISIJ Int,2006,46(1):33.
25 Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Mater,2003,51(6):1593.
26 Hu C L, Song B, Song G Y, et al. Effect of content of Mg on Ti-Mg composite solid inclusions in steel and organization [J]. Trans Nonferrous Met Soc China, 2013(11):3211(in Chinese).
胡春林, 宋波, 宋高阳,等. Mg含量对Ti-Mg复合脱氧钢中夹杂物与组织的影响[J]. 中国有色金属学报, 2013(11):3211.
27 Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels[J]. ISIJ Int,1996,36(11):1406.
28 Yang F. Fe-M-Ti-Mg (M = Si, Mn, Al) alloy composite solid steel inclusion research[D]. Wuhan:Wuhan University of Science and Technology,2011 (in Chinese).
杨飞. Fe-M-Ti-Mg(M=Si,Mn,Al )合金复合脱氧钢夹杂物的研究[D]. 武汉:武汉科技大学,2011.
29 Hatano H, Nakagawa T, Sugino T, et al. Effect of Ti and B on microstruc ture of 780 MPa class high strength steel weld metal(transformations and microstructures)[J]. R D Res Develop Kobe Steel Eng Rep,2005,91(4):397.
30 Xu L Y. Magnesium deoxidizing inclusion in steel properties and large welding line energy performance study[D]. Changsha: Central South University,2014(in Chinese).
徐龙云. 镁脱氧钢中夹杂物特性及大线能量焊接性能研究[D]. 长沙:中南大学, 2014.
31 Karasev A V, Suito H. Characteristics of fine oxide particles produced by Ti/M (M=Mg and Zr) complex deoxidation in Fe-10mass%Ni alloy[J]. ISIJ Int,2008, 48(11):1507.
32 Mimura T. Control of inclusions in tire cord steel and valve spring steel[C]//Technology for Control of Nonmetallic Inclusions and Production of Clean Steels: The 182 and 183th Nishiyama Memorial Seminar, ISIJ. Tokyo,2005:127.
33 Gregg J M, Bhadeshia H K D H. Solid-state nucleation of acicular ferrite on minerals added to molten steel[J]. Acta Mater,1997,45(2):739.
34 Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite at Ti2O3, particle in low carbon steel[J]. Acta Mater,1999,47(9):2751.
35 Stephen A C. Weld metal microstructure in carbon manganese deposits[C]//The International Conference on Quality and Reliability in Welding. Hangzhou,1984.
36 Cui Z M, Zhu L G, Zhang Q J. Numerical simulation and research trend of oxides metallurgy[J]. Mater Rev:Rev,2015,29(4):83(in Chinese).
崔志敏, 朱立光, 张庆军. 氧化物冶金中的数值模拟及研究趋势[J]. 材料导报:综述篇,2015,29(4):83.
37 Madariaga I, Gutiérrez I. Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J]. Acta Mater, 1999,47(3):951.
38 Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals[J]. J Mater Sci,1982,17(3):732.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed