Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 61-66    https://doi.org/10.11896/j.issn.1005-023X.2017.014.013
  材料研究 |
钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*
郭凯1, 于海龙2, 唐恩凌1, 王猛1, 贺丽萍1, 刘淑华1
1 沈阳理工大学装备工程学院, 沈阳 110159;
2 中国人民解放军95905部队, 锦州 121018;
Electrochemical Performance of a Novel Ca-P-Si Bioactive Ceramic Coating Formed on Titanium Surface by Plasma Electrolytic Oxidation
GUO Kai1, YU Hailong2, TANG Enling1, WANG Meng1, HE Liping1, LIU Shuhua1
1 School of Equipment engineering, Shenyang Ligong University, Shenyang 110159;
2 PLA 95905, Jinzhou 121018;
下载:  全 文 ( PDF ) ( 2137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等离子体电解氧化法在钛表面制备Ca-P-Si生物活性陶瓷氧化膜。将纯钛及等离子体电解氧化后纯钛两种样品分别浸在37 ℃的Hank模拟体液中,用电化学实验分析其电化学性能。动电位极化曲线和交流阻抗结果表明,经过等离子体电解氧化处理后纯钛的自腐蚀电位升高了0.7 V,经过28 d的浸泡,微弧氧化处理后钛的阻抗值仍接近未处理时的1.5倍。微孤氧化陶瓷膜提高钛基体耐腐蚀性能归因于外层的羟基磷灰石层及微弧氧化的致密内层形成隔离层将基体与溶液隔离,起到了抗腐蚀作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭凯
于海龙
唐恩凌
王猛
贺丽萍
刘淑华
关键词:  纯钛  等离子体电解氧化  生物活性  电化学性能    
Abstract: The Ca-P-Si bioactive ceramic coating was prepared by means of plasma electrolytic oxidation on the surface of pure titanium. The sample surface was almost completely covered by hydroxyapatite after being immersed in simulated body fluid in 28 days. The electrochemical performances of pure titanium and plasma electrolytic oxidized (i.e.bioactive ceramic coated) pure tita-nium, both of which were immersed into Hank’s simulated body fluid at 37 ℃, were analyzed by electrochemical experiment.The results of the potentiodynamic polarization curves and the alternating-current impedance showed that the Ca-P-Si coated sample achieved an Ecorr rise of 0.7 V compared to pure Ti, as well as an impedance conspicuously higher than pure Ti after 28 days immersion. The corrosion resistance of the Ti matrix is promoted after Ca-P-Si coating due to an isolating layer composed of hydroxyapatite outer layer and compact micro-arc oxidized inner layer, which protects the substrate from solution corrosion.
Key words:  pure titanium    plasma electrolytic oxidation    bioactive    electrochemical performance
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB39  
  TB37  
基金资助: *国家自然科学基金(51001107)
作者简介:  郭凯:男,1980年生,博士,副教授,主要从事陶瓷与粉末冶金的研究及机械设计 E-mail:99648990@qq.com
引用本文:    
郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
GUO Kai, YU Hailong, TANG Enling, WANG Meng, HE Liping, LIU Shuhua. Electrochemical Performance of a Novel Ca-P-Si Bioactive Ceramic Coating Formed on Titanium Surface by Plasma Electrolytic Oxidation. Materials Reports, 2017, 31(14): 61-66.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.013  或          https://www.mater-rep.com/CN/Y2017/V31/I14/61
1 Jin H.Research status of biomedical titanium alloys and its surface modification[J].Chin J Rare Met,2003,27(6):794(in Chinese).
金红.医用钛合金及其表面改性技术的研究现状[J].稀有金属,2003,27(6):794.
2 李佐臣.生物工程用钛合金研究与进展[C]∥94’秋季中国材料研讨会论文集.北京:中国材料研究学会,1994:3352.
3 Bill R C.Selected fretting-wear-resistant coatings for BT9 alloy [J].Wear,1985,106:283.
4 Hulshoff J,von dijk K,et al.A histological and histomorphometrical evalaiton of screw-type calciumphosphate (Ca-P) coated implants;An in vivo experiment in maxillary cancellous bone of goats[J].Mater Sci Mater Med,1996,7:603.
5 Li Q.Metal materials for organism[J].Metall Funct Mater,2000,7(4):9(in Chinese).
李青.生物体用金属材料[J]. 金属功能材料,2000,7(4):9.
6 Zhang Y M,Guo T W,Li Z C.The research on titanium and titanium alloy in dental use[J].J Biomed Eng,2000,17(2):206(in Chinese).
张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程杂志,2000,17(2):206.
7 Shkouhfar M,Dehghanian C,Montazeri M.Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance[J].Appl Surf Sci,2012,258(7):2416.
8 Wang X,Cao Y,Yang L,et al.Bioactivity study of the titanium plates treated with microarc oxidation and alkali[J].J Nanosci Nanotech-nol,2011,11(11):9650.
9 Pan J,Leygraf C,Thierry D,et al.Corrosion resistance for biomate-rial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering [J]. J Biomed Mater Res,1997,35(3):309.
10 Schwarz K,Milne D B.Growth-promoting effects of silicon in rats [J]. Nature,1972,239:333.
11 Kodubo T,Ito S,Shigematsu M,et al. Fatigure and life-time of bioactive glass-ceramic A-W containing apatite and wollastonite[J]. J Mater Sci,1987,22(11):4067.
12 Kuiper A E T,et al.Plasma oxidation of thin aluminum layers for magnetic spin-tunnel junctions [J].J Appl Phys,2001,89(3):1965.
13 Yerokhin A L,et al.Characterization of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy[J].Surf Coat Technol,2000,130(1):195.
14 Nie X,et al.Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J].Surf Coat Technol,2000,125(1):407.
15 Krupa D,Baszkiewicz J,Kozubowski J A.Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of tita-nium[J].Bomaterials,2001,22:2139.
16 Wagner C D,Riggs W M,Davis L E,et al.Mulenger. Handbook of X-ray photoelectron spectroscopy[M]. Eden Prairie, MN: Perkin-Elmer Corp,1979
17 Aza P N De,Luklinska Z B,et al.Reactivity of a wollastonite-trical-cium phosphate Bioeutectic ceramic in human parotid saliva[M]∥Biomaterials Mulenger. Handbook of X-ray photoelectron spectroscopy. Eden Prairie:Physical Electronics,2000:1735.
18 Feng B, Chen J Y, et al.Carbonate apatite coating on titanium induced rapidly by precalcification[J].Biomaterials,2002,23:173.
19 Han Y,et al.Structure and in vitro bioactivity of titania-based films by micro-arc oxidation[J].Surf Coat Technol,2003,168(2-3):249.
20 段友容.骨诱导Ca、P系陶瓷材料中类骨磷灰石层的形成、表征和体外动态研究模型的初步建立[D].成都:四川大学,2002:15
21 Liu X Y,Ding C X,Chu P K.Mechanism of apatite formation on wollastonite coatings in simulated body fluids[J].Biomaterials,2004,25:1755.
22 Godley R,Sstarosvetsky D, Gotman I.Bonelike apatite formation on niobium metal treated in aqueous NaOH[J].J Mater Sci: Mater Med,2004,15:1073.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[7] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[8] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[9] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[12] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[13] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[14] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[15] 邓安强, 罗永春, 袁远, 康晓燕, 周健飞, 谢云丁, 沈秉金, 王悦. 超点阵结构储氢合金研究进展[J]. 材料导报, 2023, 37(17): 22040141-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed