Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 84-89    https://doi.org/10.11896/j.issn.1005-023X.2017.01.011
  材料综述 |
碳纤维水泥基复合材料Seebeck效应研究现状
魏 剑,赵莉莉,张 倩,聂证博
西安建筑科技大学材料与矿资学院,西安 710055
Development of Seebeck Effect of Carbon Fiber Reinforced Cement-based Composites
WEI Jian, ZHAO Lili, ZHANG Qian, NIE Zhengbo
College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有显著Seebeck效应的碳纤维水泥基复合材料(Carbon fiber reinforced cement-based composites, 简写为CFRC) 近年来受到广泛关注。综述了CFRC的导电机理、Seebeck效应强化途径及其工程应用前景。CFRC的载流子类型主要包括离子、电子和空穴,并以空穴为主。碳纤维/碳纳米管掺杂,CFRC的Seebeck系数可提高至约30 μV/℃;钢纤维掺杂水泥基材料表现为n型半导体,其Seebeck可达68 μV/℃;金属氧化物Bi2O3掺杂可将CFRC的Seebeck系数稳步提高到100.28 μV/℃,而ZnO和Fe2O3掺杂可使CFRC的Seebeck系数分别增大到3 300 μV/℃和2 500 μV/℃。这些研究有效地促进了CFRC在城市室外热量的转换收集、工业余热能量收集和长寿命结构健康监测传感器等领域的研究与发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏 剑
赵莉莉
张 倩
聂证博
关键词:  碳纤维  水泥基复合材料  Seebeck效应  热电性能    
Abstract: Recently, carbon fiber reinforced cement-based composites (CFRC) has been concerned considerably due to its strong Seebeck effect. The electrical conduction mechanism, CFRC-Seebeck effect reinforcement approaches, and potential applications of CFRC are reviewed in this paper. The carrier types of CFRC is mainly related to ionic, electronic and hole carriers, and the hole carriers play the most important role. The Seebeck coefficient of about 30 μV/℃ can be obtained by adding carbon fibers or carbon nanotubes. The steel fiber reinforced cement-based composites belongs to an n-type semiconductor, and its Seebck coefficient can be increased to 68 μV/℃. The CFRC-Seebeck coefficient of 100.28 μV/℃ can be obtained by mixing Bi2O3, and the largest Seebeck coefficients of 3 300 μV/℃ and 2 500 μV/℃ can be obtained by adding ZnO and Fe2O3, respectively. These studies have effectively promoted the research and development of CFRC in the fields of urban heat harvesting, energy conservation in buildings, the waste heating collection and structural self-sensing.
Key words:  carbon fiber    cement-based composites    Seebeck effect    thermoelectric properties
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51578448);国家自然科学基金青年科学基金项目(51308447)
作者简介:  魏剑:男,教授,主要从事碳纤维水泥基复合材料热电性能研究 E-mail:weijian@xauat.edu.cn 赵莉莉:女,1990年生,硕士研究生,主要从事碳纤维水泥基复合材料热电性能研究 E-mail:zhaolili0216575@163.com
引用本文:    
魏 剑, 赵莉莉, 张 倩, 聂证博. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1): 84-89.
WEI Jian, ZHAO Lili, ZHANG Qian, NIE Zhengbo. Development of Seebeck Effect of Carbon Fiber Reinforced Cement-based Composites. Materials Reports, 2017, 31(1): 84-89.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.011  或          https://www.mater-rep.com/CN/Y2017/V31/I1/84
1 Huang H T, Wu R J, Wang X Y, et al. Research of urban heat island effect[J]. Henan Sci,2015,33(7):1214(in Chinese).
黄宏涛,吴荣军,王晓云,等.城市热岛效应研究进展[J].河南科学,2015,33(7):1214.
2 Shi B, Tang C S, Gao L, et al. Observation and analysis of the urban heat island effect on soil in Nanjing, China[J]. Environmental Earth Sci,2012,67(1):215.
3 Sun Y M, Augenbroe G. Urban heat island effect on energy application studies of office buildings[J]. Energy Buildings,2014,77(7):171.
4 Magli S, Lodi C, Lombroso L, et al. Analysis of the urban heat island effects on building energy consumption[J]. Int J Energy Environmental Eng,2014,6(1):1.
5 Wo X Y. Comparison and elemental analysis of the performance of domestic and abroad carbon fiber[J]. Hi-Tech Fiber Application,2000,25(2):30(in Chinese).
沃西源.国内外几种碳纤维性能比较及初步分析[J]. 高科技纤维与应用,2000,25(2):30.
6 Wang S K, Sun W H. Application analysis of carbon fiber materials in the reinforced concrete flexural[J]. Jilin Electric Power,2016,44(1):36(in Chinese).
王帅坤,孙文海.碳纤维材料在混凝土受弯构件加固中的应用分析[J].吉林电力,2016,44(1):36.
7 Katz A, Bentur A. Mechanical properties and pore structure of carbon fiber reinforced cementitious composites[J]. Cem Concr Res,1994,24(2):214.
8 Park S B, Lee B I, Lim Y S. Experimental study on the engineering properties of carbon fiber reinforced cement composites[J]. Cem Concr Res,1991,21(4):589.
9 Chen P W, Chung D D L. Low-drying-shrinkage concrete containing carbon fibers[J]. Composites Part B,1996,27(3-4):269.
10 Shi Z Q, Chung D D L. Improving the abrasion resistance of mortar by adding latex and carbon fibers[J]. Cem Concr Res,1997,27(8):1149.
11 Chen P W, Chung D D L. Improving the bonding between old and new concrete by adding carbon fibers to the new concrete[J]. Cem Concr Res,1995,25(3):491.
12 Jiang S, Gao X J, Yao B. Research on manufacture and piezoresistive effect of carbon nanofiber concrete[J]. Low Temperature Architecture Technol,2015,37(1):10(in Chinese).
姜山,高小建,姚斌.纳米碳纤维混凝土制备及其压敏性能[J].低温建筑技术,2015,37(1):10.
13 Liu X Y, Yao W, Wu K R. Thermal-resistance characteristics of carbon fiber reinforced cement-based composites[J]. J Hohai University:Nat Sci,2007,35(2):202(in Chinese).
刘小艳,姚武,吴科如.碳纤维水泥基复合材料温敏特性研究[J]. 河海大学学报:自然科学版,2007,35(2):202.
14 Wang Z J, Li K Z, Wang C. Electricity characteristics of carbon fiber reinforced cement based composites(CFRC)[J]. Mater Rev:Rev,2009,23(12):47(in Chinese).
王振军,李克智,王闯.碳纤维增强水泥基复合材料(CFRC)的电学特性[J]. 材料导报:综述篇, 2009,23(12):47.
15 Tang Z Q, Li Z Q, Hou Z F, et al. Influence of setting of electrical conductive concrete heating layer on effectiveness deicing[J]. J Wuhan University of Technology,2002,24(2):45(in Chinese).
唐祖全,李卓球,侯作富,等.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002,24(2):45.
16 Sun M Q, Li Z Q, Mao Q Z, et al. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cem Concr Res,1998,28(12):1707.
17 Sun M Q, Li Z Q, Mao Q Z, et al. The main influential factors on Seebeck effect of CFRC[J]. Chinese J Mater Res,1998,12(3):329(in Chinese).
孙明清,李卓球,毛起炤,等.影响CFRC的Seebeck效应的主要因素[J]. 材料研究学报,1998,12(3):329.
18 Wen S H, Chung D D L. Seebeck effect in carbon fiber-reinforced cement[J]. Cem Concr Res,1999,29(12):1989.
19 Wen S H, Chung D D L. Erratum to “Seebeck effect in carbon fiber reinforced cement”[J]. Cem Concr Res,2004,34(12):2341.
20 Chung D D L. Cement-matrix composites for thermal engineering[J]. Appl Thermal Eng,2001,21(16):1607.
21 Bhattacharjee S, Batra A K, Cain J. Energy harvesting from pavements using pyroelectric single crystal and nano-composite based smart materials[C]//Congress of Transportation and Development Institute. Chicago,2011:741.
22 Zuo J Q, Yao W, Qin J J, et al. Measurements of thermoelectric behavior and microstructure of carbon nanotubes/carbon fiber-cement based composite[J]. Key Eng Mater,2011,492:242.
23 Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics[J]. Mater Sci Eng R Reports,2010,67(2-4):19.
24 高敏. 温差电转换及其应用[M].天津:兵器工业出版社,1996.
25 Cˇern R, Němecˇková J, Rovnaníková P, et al. Effect of thermal decomposition processes on the thermal properties of carbon fiber reinforced cement composites in high-temperature range[J]. J Thermal Analysis Calorimetry,2007,90(2):475.
26 Chen Y. Energy band structures and thermoelectric transport pro-perties of Te and Sb based compounds[D]. Hangzhou: Zhejiang University,2012(in Chinese).
陈怡.碲基和锑基化合物的能带结构和热电输运特性[D].杭州:浙江大学,2012.
27 Singh A P, Mishra M, Chandra A, et al. Graphene oxide/ferro-fluid/cement composites for electromagnetic interference shielding application[J]. Nanotechnology,2011,22(46):465701.
28 Zhang Y, Zhi R T, Zhu F W, et al. Electrical properties of carbon fiber-MDF cement composite[J]. Mater Sci Prog,1992,6(4):357(in Chinese).
张跃,职任涛,朱逢吾,等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展,1992,6(4):357.
29 Wang X F, Wang Y L. Smart properties of carbon fiber reinforced cement composites[J]. J Chinese Ceram Soc,1998,26(2):253(in Chinese).
王秀峰,王永兰.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报,1998,26(2):253.
30 Ren J, Lu S C, Tang F Q. The voltage-current characteristics and dispersion effect of RLW electrostatic disperser[J]. Powder Tech-nol,2003,135:261.
31 南策文.非均质材料物理[M].北京:科学出版社,2005.
32 Sun M Q, Li Z Q, Mao Q Z, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cem Concr Res,1998,28(4):549.
33 Luo W H. Preparation, microstructure and thermoelectric properties of p-type high manganese silicon compounds[D]. Wuhan: Wuhan University of Technology,2011(in Chinese).
罗文辉.p型高锰硅化合物的制备、微结构及热电性能[D].武汉:武汉理工大学,2011.
34 Sun H, Morelli D T. Thermoelectric properties of Co1-xRhxSi0.98-B0.02 alloys[J]. J Electronic Mater,2012,41(6):1125.
35 叶式中.半导体材料及其应用[M].北京:机械工业出版社,1986:179.
36 Du Y, Shen S Z, Cai K F, et al. Research progress on polymer-inorganic thermoelectric nanocomposite materials[J]. Prog Polym Sci,2012,37(6):820.
37 Sootsman J R, Chung D Y, Kanatzidis M G. New and old concepts in thermoelectric materials[J]. Angew Chem Int Ed,2009,48(46):8616.
38 Ji T, Zhang X, Li W H. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction Building Mater,2016,115:576.
39 Li H J, Zhang S Y. A new carbon materials[J]. J New Industrialization,2016,6(1):15(in Chinese).
李贺军,张守阳.新型碳材料[J].新型工业化,2016,6(1):15.
40 Sun M Q, Li Z Q, Mao Q Z, et al. A study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cem Concr Res,1999,29(5):769.
41 Wen S H, Chung D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cem Concr Res,2000,30(8):1295.
42 Wen S H, Chung D D L. Effect of carbon fiber grade on the electrical behavior of carbon fiber reinforced cement[J]. Carbon,2001,39(3):369.
43 Chen B, Yao W, Wu K R. Studies on the thermoelectric properties of cement mortar with carbon fiber and micro steel fiber[J]. J Buil-ding Mater,2004,7(3):261(in Chinese).
陈兵,姚武,吴科如.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,2004,7(3):261.
44 Wen S H, Chung D D L. Thermoelectric behavior of carbon-cement composites[J]. Carbon,2002,40(13):2495.
45 Zhao W Y, Zhang W F, Ma C H, et al. Mechanical and thermoelectric property of graphite electrically conductive concrete[J]. J Daqing Petroleum Institute,2008,32(6):83(in Chinese).
赵文艳,张文福,马昌恒,等.石墨导电混凝土力学性能与热电特性[J]. 大庆石油学院学报,2008,32(6):83.
46 Cao H Y, Yao W, Qin J J. Seebeck effect in graphite-carbon fiber cement based composite[J]. Adv Mater Res,2010,177:566.
47 Yao W, Zuo J Q, Wu K R. Microstructure and thermoelectric pro-perties of carbon nanotube-carbon fiber/cement composites[J]. J Funct Mater,2013,44(13):1924(in Chinese).
姚武,左俊卿,吴科如.碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J].功能材料,2013,44(13):1924.
48 Tian M, Li F, Chen L, et al. Thermoelectric power behavior in carbon nanotubule bundles from 4.2 to 300 K[J]. Phys Rev B,1998,58(3):1166.
49 Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys Rev Lett,2001,87(87):1.
50 Small J P, Perez K M, Kim P. Modulation of thermoelectric power of individual carbon nanotubes[J]. Phys Rev Lett,2003,91(25):12475.
51 Dresselhaus M S, Dresselhaus G, Sun X, et al. Low-dimensional thermoelectric materials[J].Phys Solid State,1999,41(5):679.
52 Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater,2007,19(8):1043.
53 Majumdar A. Thermoelectricity in semiconductor nanostructures[J]. Science,2004,303(5659):777.
54 Zuo J Q, Yao W, Wu K R. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fullerenes Nanotubes Carbon Nanostructures,2014,23(5):383.
55 Wen S H, Chung D D L. Seebeck effect in steel fiber reinforced cement[J]. Cem Concr Res,2000,30(4):661.
56 Wen S H, Chung D D L. Effect of fiber content on the thermoelectric behavior of cement[J]. J Mater Sci,2004,39(13):4103.
57 Yao W, Xia Q. Preparation and thermoelectric properties of bismuth telluride-carbon fiber reinforced cement composites[J]. J Funct Mater,2014,45(15):15134(in Chinese).
姚武,夏强.碲化铋-碳纤维水泥基材料的制备及热电性能[J].功能材料,2014,45(15):15134.
58 Wei J, Hao L, He G P, et al. Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3Co4O9[J]. Appl Mechan Mater,2013,320:354.
59 Wei J, Hao L, He G P, et al. Enhanced thermoelectric effect of carbon fiberreinforced cement composites by metallic oxide/cement interface[J]. Ceram Int,2014,40(6):8261.
60 Wei J, Zhang Q, Zhao L L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceram Int,2016,42(10):11568.
61 Cheng X X, Yang Q B. The comprehensive utilization of steel slag[J]. Fly Ash Comprehensive Utilization,2010(5):45(in Chinese).
程绪想,杨全兵.钢渣的综合利用[J].粉煤灰综合利用,2010(5):45.
62 Tang Z Q, Tong C F, Qian J S, et al. Study on the Seebeck effect in steel-slag concrete[J]. J Chongqing Jianzhu University,2008,30(3):125(in Chinese).
唐祖全,童成丰,钱觉时,等.钢渣混凝土的Seebeck效应研究[J].重庆建筑大学学报,2008,30(3):125.
63 Zuo J Q, Yao W, Qin J J. Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag[J]. Key Eng Mater,2013,539:103.
64 Chen P W, Chung D D L. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading[J]. J Am Ceram Soc,1995,360(3):816.
65 Wen S H, Chung D D L. Cement-based thermocouples[J]. Cem Concr Res,2001,30(3):507.
66 Sun M Q, Li Z Q, Liu Q P, et al. A study on thermal self-diagnostic and self-adaptive smart concrete structures[J]. Cem Concr Res,2000,30(8):1251.
67 Wei J, Nie Z B, He G P, et al. Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites[J]. RSC Adv,2014,4(48):48128.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[5] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[6] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[7] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[8] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[9] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[10] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[11] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[12] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[13] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[14] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[15] 贾峰峰, 俄松峰, 陈珊珊, 宁逗逗, 黄吉振, 陆赵情. 碳纤维湿法造纸工艺及碳纤维纸基功能材料的研究进展[J]. 材料导报, 2023, 37(8): 21070135-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed