Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 730-734    https://doi.org/10.11896/j.issn.1005-023X.2018.05.007
  材料综述 |
聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展
王赫1, 王洪杰1, 王闻宇1, 金欣1, 林童1, 2
1 天津工业大学省部共建分离膜与膜过程国家重点实验室,天津 300387;
2 澳大利亚迪肯大学前沿纤维研究与创新中心,吉朗 VIC 3217
Research Progress in Polyacrylonitrile (PAN) Based Carbon Nanofibers Electrode Materials for Supercapacitor
WANG He1, WANG Hongjie1, WANG Wenyu1, JIN Xin1, LIN Tong1,2
1 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387;
2 Australian Future Fibres Research and Innovation Center, Deakin University, Geelong VIC 3217
下载:  全 文 ( PDF ) ( 1138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器是一种介于电池和传统物理电容器之间的新型环保储能器件,近年来得到了研究者的广泛关注。电极材料是超级电容器的核心部分,因此具有更高的研究价值。聚丙烯腈基碳纳米纤维因具有良好的静电纺丝性、较高的碳化产率、优异的纳米结构、超高的比表面积以及优良的导电性和稳定性,已经成为超级电容器电极材料的研究热点。本文主要介绍了聚丙烯腈基交联结构和多孔结构碳纳米纤维电极材料,元素掺杂电极材料以及与碳材料、导电聚合物、金属氧化物复合的电极材料,并对聚丙烯腈基碳纳米纤维电极材料未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王赫
王洪杰
王闻宇
金欣
林童
关键词:  超级电容器  储能器件  电极材料  聚丙烯腈  碳纳米纤维    
Abstract: Supercapacitor is a kind of novel environmental friendly energy storage device between battery and traditional physical capa-citor. Recently, supercapacitor has attracted widely attention from researchers. Electrode material is the core component of the supercapacitor, therefore it has higher research value. Polyacrylonitrile (PAN) based carbon nanofibers have become the hot issue of research in supercapacitor electrode materials due to their good electrospinning property, high carbonization yield, excellent nanostructure, ultrahigh specific surface area, outstanding electrical conductivity and stability. In this review, the polyacrylonitrile (PAN) based carbon nanofibers electrode materials with crosslinked structure and porous structure, electrode materials doped by other element and composite electrode materials with carbon materials, conductive polymer or metal oxide are mainly introduced. The future research directions of polyacrylonitrile based carbon nanofibers electrode materials are also proposed.
Key words:  supercapacitor    energy storage device    electrode material    polyacrylonitrile    carbon nanofiber
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  O469  
基金资助: 国家自然科学基金(51103101;51573136);中国博士后科学基金(2011M500525;20110490785);天津市自然科学基金(12JCYBJC17800;16JCTPJC45100);天津市科技计划项目(课题)(15PTSYJC00230;15PTSYJC00240;15PTSYJC00250)
通讯作者:  王闻宇:通信作者,男,1972年生,副教授,主要从事新型功能纤维材料的研究 E-mail:wwy-322@126.com   
作者简介:  王赫:男,1987年生,博士研究生,研究方向为碳纳米纤维的制备及其在超级电容器中的应用 E-mail:owenwanghe@sina.com
引用本文:    
王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
WANG He, WANG Hongjie, WANG Wenyu, JIN Xin, LIN Tong. Research Progress in Polyacrylonitrile (PAN) Based Carbon Nanofibers Electrode Materials for Supercapacitor. Materials Reports, 2018, 32(5): 730-734.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.007  或          https://www.mater-rep.com/CN/Y2018/V32/I5/730
1 Chen S, He S, Hou H. Electrospinning technology for applications in supercapacitors[J].Current Organic Chemistry,2013,71:1402.
2 Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520.
3 Conway B E. Transition from “supercapacitor” to “battery” beha-vior in electrochemical energy storage[J].Journal of the Electrochemical Society,1991,138(6):1539.
4 Zheng J, Huang J, Jow T. The limitations of energy density for electrochemical capacitors[J].Journal of the Electrochemical Society,1997,144(6):2026.
5 Ishikawa M, Morita M, Ihara M, et al. Electric Double-layer capa-citor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts[J].Journal of the Electrochemical Society,1994,141(7):1730.
6 Simon P, Gogotsi Y. Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845.
7 Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel?[J].Advanced Materials,2004,16(14):1151.
8 Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J].Progress in Polymer Science,2012,37(3):487.
9 Zussman E, Chen X, Ding W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J].Carbon,2005,43(10):2175.
10 Cheng K K, Hsu T C, Kao L H. Carbon nanofibers prepared by a novel co-extrusion and melt-spinning of phenol formaldehyde-based core/sheath polymer blends[J].Journal of Materials Science,2011,46(6):1870.
11 Ono H, Oya A. Preparation of highly crystalline carbon nanofibers from pitch/polymer blend[J].Carbon,2006,44(4):682.
12 Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargea-ble sodium-ion batteries[J].Journal of Materials Chemistry A,2013,1(36):10662.
13 Yusof N, Ismail A F. Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review[J].Journal of Analytical & Applied Pyrolysis,2012,93:1.
14 Hu C C, Lin J Y. Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3[J].Electrochimica Acta,2002,47(25):4055.
15 Lee H Y, Goodenough J B. Supercapacitor behavior with KCl electrolyte[J].Journal of Solid State Chemistry,1999,144(1):220.
16 Lee H Y, Goodenough J B. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution[J].Journal of Solid State Chemistry,1999,148(1):81.
17 Morita M, Goto M, Matsuda Y. Ethylene carbonate-based organic electrolytes for electric double layer capacitors[J].Journal of Applied Electrochemistry,1992,22(10):901.
18 Patil S, Mahajan J R, More M A, et al. Influence of supporting electrolyte on the electrochemical synthesis of poly(o-methoxyaniline) thin films[J].Materials Letters,1999,39(5):298.
19 Cheikh Z B, Kamel F E, Gallot-Lavallée O, et al. Hydrogen doped BaTiO3, films as solid-state electrolyte for micro-supercapacitor applications[J].Journal of Alloys & Compounds,2017,721:276.
20 Liu X, Osaka T. Properties of electric double-layer capacitors with various polymer gel electrolytes[J].Journal of the Electrochemical Society,1997,144(9):3066.
21 Ingram M D, Pappin A J, Delalande F, et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes[J].Electrochimica Acta,1998,43(10):1601.
22 Yang Hui, Zhang Milin, Chen Ye. Preparation and studies on the membrane material of supercapacitors[J].Applied Science and Technology,2006,33(7):51(in Chinese).
杨惠,张密林,陈野.超级电容器隔膜材料的制备与研究[J].应用科技,2006,33(7):51.
23 Liu Hao. Research of diaphragms and electrolyte for the super capa-citor[D].Changchun:Jilin University,2015(in Chinese).
刘浩.超级电容器隔膜与电解质的研究[D].长春:吉林大学,2015.
24 Chang J K, Lee M T, Tsai W T. In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J].Journal of Power Sources,2007,166(2):590.
25 Lai C C, Lo C T. Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors[J].Electrochimica Acta,2015,183:85.
26 Liu C, Tan Y, Liu Y, et al. Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor[J].Journal of Energy Chemistry,2016,25(4):587.
27 Zhang L, Jiang Y, Wang L, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J].Electrochimica Acta,2016,196:189.
28 Kim C H, Kim B H. Zinc oxide/activated carbon nanofiber compo-sites for high-performance supercapacitor electrodes[J].Journal of Power Sources,2015,274:512.
29 Niu H, Zhang J, Xie Z, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J].Carbon,2011,49(7):2380.
30 Xue G, Zhong J, Cheng Y, et al. Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors[J].Electrochimica Acta,2016,215:29.
31 Xu Q, Yu X, Liang Q, et al. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes[J].Journal of Electroanalytical Chemistry,2015,739:84.
32 Yan X, Liu Y, Fan X, et al. Nitrogen/phosphorus co-doped nonporous carbon nanofibers for high-performance supercapacitors[J].Journal of Power Sources,2014,248:745.
33 Huang K, Yao Y, Yang X, et al. Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in bin-der-free supercapacitors[J].Materials Chemistry & Physics,2016,169:1.
34 Geim A K, Novoselov K S. The rise of graphene[J].Nature Mate-rials,2007,6(3):183.
35 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902.
36 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385.
37 Pumera M. Electrochemistry of graphene: New horizons for sensing and energy storage[J].The Chemical Record,2009,9(4):211.
38 Kim S Y, Yang K, Kim B H. Enhanced electrical capacitance of he-teroatom-decorated nanoporous carbon nanofiber composites containing graphene[J].Electrochimica Acta,2014,137(8):781.
39 Zhou Z, Wu X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization[J].Journal of Power Sources,2013,222(2):410.
40 Kim B H, Yang K S, Ferraris J P. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors[J].Electrochimica Acta,2012,75(4):325.
41 Hsu H C, Wang C H, Chang Y C, et al. Graphene oxides and carbon nanotubes embedded in polyacrylonitrile-based carbon nanofibers used as electrodes for supercapacitor[J].Journal of Physics and Chemistry of Solids,2015,85:62.
42 Cheng Y, Huang L, Xiao X, et al. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode[J].Nano Energy,2015,15:66.
43 Jang J, Bae J, Choi M, et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J].Carbon,2005,43(13):2730.
44 Ju Y W, Choi G R, Jung H R, et al. Electrochemical properties of electrospun PAN/MWCNT carbon nanofibers electrodes coated with polypyrrole[J].Electrochimica Acta,2008,53(19):5796.
45 Yao B, Yuan L, Xiao X, et al. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes[J].Nano Energy,2013,2(6):1071.
46 Zhang J, Chen P, Oh B H, et al. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly[J].Nanoscale,2013,5(20):9860.
47 Kim M, Lee C, Jang J. Fabrication of highly flexible, scalable, and high-performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystalli-nity[J].Advanced Functional Materials,2014,24(17):2489.
48 Yang C, Shen J, Wang C, et al. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes[J].Journal of Materials Chemistry A,2014,2(5):1458.
49 Ning P, Duan X, Ju X, et al. Facile synthesis of carbon nanofibers/MnO2 nanosheets as high-performance electrodes for asymmetric supercapacitors[J].Electrochimica Acta,2016,210:754.
50 Lee D G, Kim J H, Kim B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes: Effect of poly(methyl methacrylate) concentration[J].Electrochimica Acta,2016,200:174.
51 Kim B H, Yang K S, Yang D J. Electrochemical behavior of activated carbon nanofiber-vanadium pentoxide composites for double-la-yer capacitors[J].Electrochimica Acta,2013,109(11):859.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[3] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[6] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[7] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[8] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[9] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[10] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[11] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[12] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[13] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[14] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[15] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed