Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120180-6    https://doi.org/10.11896/cldb.24120180
  金属与金属基复合材料 |
基于双参数屈服准则的细观损伤模型
曾家兴1, 刘剑雄1,*, 万祥明1,2, 贾有东1, 梁永欣1
1 昆明理工大学机电工程学院,昆明 650500
2 昆明理工大学城市学院,昆明 650051
Microscopic Damage Model Based on Two-parameter Yield Criterion
ZENG Jiaxing1, LIU Jianxiong1,*, WAN Xiangming1,2, JIA Youdong1, LIANG Yongxin1
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 City College, Kunming University of Science and Technology, Kunming 650051, China
下载:  全 文 ( PDF ) ( 5871KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 塑性金属的韧窝断裂源自于孔洞的发展,分析孔洞的演化过程并建立合理的损伤模型,便于研究塑性金属的变形及断裂机理。对两种优质碳素结构钢进行单向拉伸试验,采用扫描电子显微镜(SEM)观察两种材料拉伸断裂试样的微观断口形貌,发现断面处仅一个韧窝中存在夹杂。从空位凝聚角度出发,分析了无夹杂或第二相粒子情况下的孔洞形核机制。考虑静水应力对孔洞演化的影响,基于包含应力张量的第一不变量和应力偏张量的第二不变量的双参数屈服准则,分别推导了塑性耗散功率、细观应变速率和宏观应力的表达式,并在此基础上建立了包含细观损伤参量(孔洞体积分数)的宏观屈服函数,当采用拉伸和压缩屈服应力来定义材料参数α和K时,该模型可以化为Lee模型和Gurson模型。此外,该模型也可以描述孔洞演化导致塑性金属力学性能劣化的本质,在研究孔洞演化导致的韧窝断裂的力学机理时具有普适性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾家兴
刘剑雄
万祥明
贾有东
梁永欣
关键词:  塑性金属  韧性断裂  孔洞形核  双参数屈服准则  断裂机理    
Abstract: The ductile fracture of plastic metal originates from the development of pores. Analyzing the evolution process of pores and establishing a reasonable damage model facilitates the study of deformation and fracture mechanisms of plastic metal. Two kinds of high-quality carbon structural steels were subjected to uniaxial tensile test. The micro fracture morphology of tensile fracture specimens of the two materials was observed by scanning electron microscope (SEM). From the perspective of vacancy condensation, the nucleation mechanism of voids in the absence of inclusions or second phase particles was analyzed. Considering the influence of hydrostatic pressure on the evolution of pores, based on a two-parameter yield criterion that includes the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor, expressions for plastic dissipation power, microscopic strain rate, and macroscopic stress were derived. On this basis, a macroscopic yield function containing microscopic damage parameters (void volume fraction) was established. When using tensile and compressive yield stresses to define material parameters α and K, the model can be transformed into the Lee model and Gurson model. In addition, this model can also describe the essence of the deterioration of plastic metal mechanical properties caused by void evolution, and has universality in studying the mechanical mechanism of ductile fracture caused by void evolution.
Key words:  plastic metal    ductile fracture    void nucleation    two-parameter yield criterion    fracture mechanism
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  O346  
基金资助: 国家自然科学基金(52065034;50974068)
通讯作者:  * 刘剑雄,博士,昆明理工大学机电工程学院教授、博士研究生导师。目前主要从事材料断裂机理及强度理论、现代装备研究开发等方面的研究工作。jxlkmust@163.com   
作者简介:  曾家兴,昆明理工大学机电工程学院博士研究生,在刘剑雄教授的指导下进行材料断裂与损伤工作的研究。
引用本文:    
曾家兴, 刘剑雄, 万祥明, 贾有东, 梁永欣. 基于双参数屈服准则的细观损伤模型[J]. 材料导报, 2026, 40(1): 24120180-6.
ZENG Jiaxing. Microscopic Damage Model Based on Two-parameter Yield Criterion. Materials Reports, 2026, 40(1): 24120180-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120180  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120180
1 Liu Q, Wang J H, Zhao Z L, et al. Contemporary Chemical Industry, 2015, 44(3), 570 (in Chinese).
刘强, 王建华, 赵泽霖, 等. 当代化工, 2015, 44(3), 570.
2 Li R F, Lin J W, Yue B L, et al. Petrochemical Industry Technology, 2020, 27(1), 72 (in Chinese).
李瑞峰, 林俊文, 岳宝林, 等. 石化技术, 2020, 27(1), 72.
3 Yang S G, Jin Z M, Gao H, et al. Safety Technology of Special Equipment, 2021, 4(3), 18 (in Chinese).
杨树钢, 金宗明, 高宏, 等. 特种设备安全技术, 2021, 4(3), 18.
4 Maire E, Bouaziz O, Di Michiel M, et al. Acta Materialia, 2008, 56(18), 4954.
5 Wu Y J, Zhuang X C, Zhao Z. Journal of Plasticity Engineering, 2013, 20(3), 106 (in Chinese).
吴彦骏, 庄新村, 赵震. 塑性工程学报, 2013, 20(3), 106.
6 Liu L X, Zheng Q L, Zhu J, et al. Rare Metal Materials and Engineering, 2019, 48(2), 0433.
7 Yan H D, Jin H. Acta Metallurgica Sinica, 2019, 55(3), 341 (in Chinese).
闫华东, 靳慧. 金属学报, 2019, 55(3), 341.
8 Huang X W, Zhao W, Zhao J, et al. Journal of Basic Science and Engineering, 2019, 27(5), 1172 (in Chinese).
黄学伟, 赵威, 赵军, 等. 应用基础与工程科学学报, 2019, 27(5), 1172.
9 Qian L Y, Ji W T, Wang X C, et al. Journal of Mechanical Engineering, 2020, 56(24), 72 (in Chinese).
钱凌云, 纪婉婷, 王小灿, 等. 机械工程学报, 2020, 56(24), 72.
10 Xing L, Zhan M, Gao P F, et al. Progress in Natural Science: Materials International, 2021, 31(1), 77.
11 Marteleur M, Leclerc J, Colla M S, et al. Engineering Fracture Mechanics, 2021, 244(1), 1.
12 Li W Q, Ma J P, Cao R, et al. Materials Reports, 2024, 38(20), 202 (in Chinese).
李文清, 马景平, 曹睿, 等. 材料导报, 2024, 38(20), 202.
13 McClintock F A, Kaplan S M, Berg C A. International Journal of Fracture, 1966, 2(4), 614.
14 McClintock F A. Journal of Applied Mechanics, 1968, 35(2), 363.
15 Rice J R, Tracey D M. Journal of the Mechanics and Physics of Solids, 1969, 17(3), 201.
16 Argon A S, Im J, Safoglu R. Metallurgical and Materials Transactions A, 1975, 6(4), 825.
17 Landron C, Bouaziz O, Maire E, et al. Scripta Materialia, 2010, 63(10), 973.
18 Le Roy G, Embury J D, Edwards G, et al. Acta Metallrugica, 1981, 29(8), 1509.
19 French I E, Weinrich P F. Scripta Metallurgica, 1974, 8(2), 87.
20 Gurson A L. Journal of Engineering Materials and Technology, 1977, 99(1), 2.
21 Cockcroft M G, Latham D J. Journal of the Institute of Metals, 1968, 96, 33.
22 Brozzo P, Deluca B, Rendna R. In: Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group. Amsterdam, 1972.
23 Oyane M, Sato T, Okimoto K, et al. Journal of Mechanical Working Technology, 1980, 4(1), 65.
24 Bai Y L, Wierzbicki T. International Journal of Fracture, 2010, 161(1), 1.
25 Ye J H, Fan Z P. Engineering Mechanics, 2021, 38(5), 38 (in Chinese).
叶继红, 范志鹏. 工程力学, 2021, 38(5), 38.
26 Zhang J C, Lian C W, Han F. Journal of Mechanical Engineering, 2022, 58(8), 117 (in Chinese).
张骥超, 连昌伟, 韩非. 机械工程学报, 2022, 58(8), 117.
27 Deng Q F. Analysis for high temperature cracking behavior of MnS inclusions based on GTN damage model. Master's Thesis, Yanshan University, China, 2018(in Chinese).
邓清峰. 基于GTN模型的MnS夹杂物高温致裂行为研究. 硕士学位论文, 燕山大学, 2018.
28 Jiang W. Study of ductile fracture based on meso-damage mechanisms. Ph. D. Thesis, Northwestern Polytechnical University, China, 2016(in Chinese).
姜薇. 基于细观损伤机理的韧性断裂研究. 博士学位论文, 西北工业大学, 2016.
29 Dong J P, Wang S L, Zhou J, et al. Engineering Mechanics, 2021, 38(3), 239 (in Chinese).
董建鹏, 王时龙, 周杰, 等. 工程力学, 2021, 38(3), 239.
30 Zhang B, Liu J Z, Yang X S, et al. Materials Reports, 2024, 38(19), 223 (in Chinese).
张彪, 刘家招, 杨鑫三, 等. 材料导报, 2024, 38(19), 223.
31 Noell P J, Sabisch J E C, Medlin D L, et al. Acta Materialia, 2020, 184, 211.
32 Christensen R M. Journal of Engineering Materials and Technology, 2004, 126(1), 45.
33 Christensen R M. Journal of Applied Mechanics, 2006, 73(5), 852.
34 Lee J H, Oung J. Journal of Applied Mechanics, 2000, 67(2), 288.
[1] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[2] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[3] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[4] 张忠科, 刘旭峰, 李昭, 雄健强. P92钢等离子弧焊接接头原位拉伸的SEM观察研究[J]. 材料导报, 2021, 35(24): 24128-24133.
[5] 毛育青, 柯黎明, 江周明. 搅拌针端部挤压区内塑性金属的流动行为[J]. 材料导报, 2018, 32(20): 3612-3617.
[6] 薛克敏, 薄冬青, 王薄笑天, 刘梅, 李萍. 7A60铝合金ECAP过程第二相演化行为及机理[J]. 材料导报, 2018, 32(18): 3195-3198.
[1] ZHANG Kaiming, LI Chunyu, SUN Hongru, HAN Zijian, ZHANG Xu, WEI Shuang,LU Xuge, DONG Wei, SHEN Ding, YANG Shaobin. First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries[J]. Materials Reports, 2025, 39(24): 24120040 -9 .
[2] LIAO Muzi, HE Liang, WANG Baokai, NIU Mengyang, SUN Chang, YUAN Yunqi,CAO Wenbin, WANG Qi. Influence of Dispersants on the Dispersion Performance of SiO2 Aerogel Powder in Aqueous Systems[J]. Materials Reports, 2025, 39(24): 24120191 -6 .
[3] . [J]. Materials Reports, 2026, 40(1): 0 .
[4] WU Yue. Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries[J]. Materials Reports, 2026, 40(1): 24120198 -12 .
[5] LI Chaolei. Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells[J]. Materials Reports, 2026, 40(1): 25010096 -5 .
[6] YANG Han. MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS[J]. Materials Reports, 2026, 40(1): 24090090 -9 .
[7] WANG Shijun, YANG Ming, WANG Wenjia. Application of MXene-based Composites in Aviation Field[J]. Materials Reports, 2026, 40(1): 25010040 -9 .
[8] CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng. Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels[J]. Materials Reports, 2026, 40(1): 25020183 -9 .
[9] HU Pengfei, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen. A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies[J]. Materials Reports, 2026, 40(1): 24120017 -11 .
[10] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed