Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040055-4    https://doi.org/10.11896/cldb.24040055
  金属与金属基复合材料 |
增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为
曾琦1,2, 倪浩涵3, 刘伟4, 黎超超2, 王江伟3,*
1 浙江大学航空航天学院,杭州 310027
2 中国航发湖南动力机械研究所,湖南 株洲 412002
3 浙江大学材料科学与工程学院,杭州 310027
4 中国航发北京航空材料研究院,北京 100095
Microstructure Evolution and Crack Propagation Behaviors of the Primary Hole in Additive Manufactured GH3536 Reverse-flow Combustor Liner
ZENG Qi1,2, NI Haohan3, LIU Wei4, LI Chaochao2, WANG Jiangwei3,*
1 School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
2 AECC Hunan Aviation Plant Research Institute, Zhuzhou 412002, Hunan, China
3 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
4 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 21241KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造技术能够实现结构复杂部件的快速近净成形,在航空航天领域得到了广泛关注。然而,近服役工况条件下增材制造热端零部件的损伤和失效行为研究当前仍较为缺乏。本工作利用激光粉末床熔融制备了GH3536回流燃烧室火焰筒部件,开展了近服役工况条件下的部件燃烧仿真模拟试验,借助显微组织分析揭示了裂纹诱导的火焰筒部件主燃孔失效机制,阐明了裂纹萌生机理以及裂纹扩展过程中的高温氧化和沿晶偏转行为,对增材制造高温合金零部件的安全服役设计具有参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾琦
倪浩涵
刘伟
黎超超
王江伟
关键词:  激光增材制造  火焰筒  高温合金  组织演变  裂纹扩展    
Abstract: Additive manufacturing technology enables rapid near-net forming of complex-shape parts and has raised significant attention in the aerospace industry. However, the damage and failure behaviors of additive manufactured hot-part components under service conditions remain largely unclear. In this work, we employed laser powder-bed fusion to fabricate the GH3536 reverse-flow combustor liner and conducted combustion tests under realistic service conditions. By analyzing the microstructure, we revealed the mechanism of cracking induced failure of the primary hole, as well as the high-temperature oxidation and intergranular fracture behaviors during the crack propagation. These findings hold important implications for the safety design of additive manufacturing combustor liner under service conditions.
Key words:  laser additive manufacturing    combustor liner    superalloy    microstructure evolution    crack propagation
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG146.1+5  
基金资助: 国家自然科学基金(52071284);中国航空发动机集团(HFZL2019CXY001)
通讯作者:  王江伟,浙江大学材料科学与工程学院研究员、博士研究生导师。主要从事金属材料结构与性能关系、塑性变形机制、原位电子显微学研究,在金属材料的界面塑性变形机制方面取得若干进展。jiangwei_wang@zju.edu.cn   
作者简介:  曾琦,现为浙江大学航空航天学院博士研究生,在郑耀教授和王高峰教授的指导下进行研究。目前主要研究领域为航空发动机燃烧室设计技术研究。
引用本文:    
曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
ZENG Qi, NI Haohan, LIU Wei, LI Chaochao, WANG Jiangwei. Microstructure Evolution and Crack Propagation Behaviors of the Primary Hole in Additive Manufactured GH3536 Reverse-flow Combustor Liner. Materials Reports, 2025, 39(8): 24040055-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040055  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040055
1 Backman D G,Williams J C. Science, 1992, 255(5048), 1082.
2 Huo M, Zhao H. Materials Reports, 2023, 37(17), 223 (in Chinese).
霍苗, 赵惠. 材料导报, 2023, 37(17), 223.
3 Hong J, Gao J H, Ma Y H, et al. Journal of Aerospace Power, 2010, 25(2), 388 (in Chinese).
洪杰, 高金海, 马艳红, 等. 航空动力学报, 2010, 25(2), 388.
4 Li Y L, Hong Z L. Aeronautical Manufacturing Technology, 2021, 64(14), 87 (in Chinese).
李玉龙, 洪智亮. 航空制造技术, 2021, 64(14), 87.
5 Xu S, Yu B. Metal Working(Metal Cutting), 2013(18), 61 (in Chinese).
许帅, 于冰. 金属加工(冷加工), 2013(18), 61.
6 Catchpole-Smith S, Aboulkhair N, Parry L, et al. Additive Manufacturing, 2017, 15, 113.
7 Alper Kanyilmaz, Ali Gökhan Demir, Martina Chierici, et al. Additive Manufacturing, 2022, 50, 102541.
8 Adrián Uriondo, Manuel Esperon-Miguez, Suresh Perinpanayagam. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11), 2132.
9 Gu D, Shi X, Poprawe R, et al. Science, 2021, 372, 6545.
10 Byron Blakey-Milner, Paul Gradl, Glen Snedden, et al. Materials & Design, 2021, 209, 110008.
11 Qu M, Guo Q, Escano L I, et al. Nature Communications, 2022, 13, 1079.
12 Bertsch K M, de Bellefon G M, Kuehl B, et al. Acta Materialia, 2020, 199, 19.
13 Sanchez-Mata O, Muñiz-Lerma J A, Wang X, et al. Materials Science and Engineering: A, 2020, 780, 139177.
14 Sun Shanshan, Teng Qing, Xie Yin, et al. Additive Manufacturing, 2021, 46, 102168.
15 Li W P, Yang L J. Acta Aeronautica et Astronautica Sinica, 2023, 44(9), 175 (in Chinese).
李伟平, 杨龙金. 航空学报, 2023, 44(9), 175.
16 Zhang J X, Cai Z B, Zhai W K, et al. Journal of Aerospace Power, DOI: 10. 13224/j. cnki. jasp. 20220812 (in Chinese).
张家祥, 蔡志斌, 翟维阔, 等. 航空动力学报, DOI: 10. 13224/j. cnki. jasp. 20220812.
17 Hao Zhibo, Tian Tian, Yang Yan, et al. Materials Research Express, 2019, 6, 1065e5.
18 Ren Dechun, Zhang Lianmin, Liu Yujing, et al. Journal of Materials Research and Technology, 2023, 26, 4595.
19 Arne Röttger, Karina Geenen, Matthias Windmann, et al. Materials Science and Engineering: A, 2016, 678, 365.
20 Tillmann W, Schaak C, Nellesen J, et al. Additive Manufacturing, 2017, 13, 93.
21 Li Bo, Liu Fei, Li Cong, et al. Corrosion Science, 2021, 188, 109554.
22 Traub H, Neuhäuser H, Schwink C. Acta Metallurgica, 1977, 25(4), 437.
23 Li Q T, Jing X N. Gas Turbine Experiment and Research, 1999(1), 40 (in Chinese).
李全通, 景小宁. 燃气涡轮试验与研究, 1999(1), 40.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[4] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[5] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[6] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[7] 王清洲, 孙颖晖, 薛晓, 马士宾, 肖成志. 玻璃钢夹砂管涵夹砂层细观断裂数值模拟[J]. 材料导报, 2024, 38(17): 22100284-10.
[8] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[9] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[10] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[11] 余宸, 田威, 王杰, 高晋峰. 砂型3D打印材料在岩体物理模型试验中的应用研究及展望[J]. 材料导报, 2024, 38(12): 22120133-9.
[12] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[13] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[14] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[15] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed