Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24040039-6    https://doi.org/10.11896/cldb.24040039
  金属与金属基复合材料 |
镧镍系合金对氢化镁组织结构与储氢性能的影响及机理
刘宇1, 张健1,*, 庞小通1, 周小杰1, 卢先正1, 陈小敏1, 李佳豪1, 彭平2
1 长沙理工大学机械与运载工程学院,长沙 410114
2 湖南大学材料科学与工程学院,长沙 410082
Effect and Mechanism of Lanthanum-Nickel Series Alloy on the Microstructures and Hydrogen Storage Performance of Magnesium Hydride
LIU Yu1, ZHANG Jian1,*, PANG Xiaotong1, ZHOU Xiaojie1, LU Xianzheng1, CHEN Xiaomin1, LI Jiahao1, PENG Ping2
1 College of Mechanical and Vehicle Engineering, Changsha University of Science and Technology, Changsha 410114, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 53723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空熔炼法制备出LamNin合金,进而将其与MgH2按照不同比例高能球磨,获得MgH2-x%LamNin (x=5,10,15)储氢复合体系,并结合实验表征与第一性原理计算,系统研究了LamNin添加对MgH2组织结构与储氢性能的影响及机理。结果表明,LamNin合金主要由LaNi5主相以及少量的LaNi3、La2Ni3相组成,其添加对MgH2吸放氢具有明显的催化作用。复合体系中MgH2-10%LamNin储氢性能最为优异,其在247 ℃下即可开始放氢,该体系在300 ℃、500 s内可释放6.0%(质量分数)的氢气,在300 ℃、120 s内其吸氢量可达理论储氢量的84%。吸放氢过程中,MgH2与LamNin原位反应生成Mg2Ni与LaH3,原位生成的Mg2Ni、LaH3以及原有的LaNi5对MgH2吸氢均表现出催化作用,有效促进了H2解离,提高体系的吸氢动力学;而放氢时,LaH3则为主要催化相,其与MgH2之间产生电荷转移,有效削弱了Mg-H键强,进而改善其放氢动力学。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宇
张健
庞小通
周小杰
卢先正
陈小敏
李佳豪
彭平
关键词:  氢化镁  催化掺杂  镧镍系合金  吸放氢动力学  第一性原理计算    
Abstract: The LamNin alloy was prepared by vacuum melting method, and then it was milled with MgH2 according to different ratios by using high energy ball milling to obtain MgH2-xwt%LamNin (x=5, 10, 15) hydrogen storage composite systems. Combined with experimental characterization and first-principle calculations, the effect and mechanism of LamNin addition on the microstructures and hydrogen storage properties of MgH2 were studied systematically. The results show that LamNin alloy is mainly composed of LaNi5 phase and a small amount of LaNi3 and La2Ni3 phases, and the addition of LamNin alloy shows an obvious catalytic effect on hydrogen absorption and desorption of MgH2. Among these MgH2-xwt%LamNin (x=5, 10, 15) composite systems, the MgH2-10wt%LamNin has the best hydrogen storage performance, It can start hydrogen desorption at 247 ℃, and can release 6.0% hydrogen at 300 ℃ within 500 s, and has a hydrogen absorption capacity of 84% of the theoretical hydrogen storage capacity at 300 ℃ within 120 s. In the process of hydrogen absorption and desorption, Mg2Ni and LaH3 are generated by the in situ reaction of MgH2 with LamNin, Mg2Ni and LaH3 and primitive LaNi5 all catalyze the hydrogen absorption of MgH2, which effectively promotes the dissociation of H2, thus improves the hydrogen absorption kinetics of the system. During hydrogen desorption, LaH3 is the main catalytic phase, and the charge transfer between LaH3 and MgH2 occurs, which effectively weakens the bonding strength of Mg-H and improves the hydrogen desorption kinetics.
Key words:  magnesium hydride    catalytic doping    lanthanum nickel series alloy    hydrogen absorption and desorption kinetics    first-principles calculations
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG139.7  
基金资助: 国家自然科学基金(51874049);湖南省研究生科研创新项目(LXBZZ2024208);长沙理工大学专业学位研究生实践创新与创业能力提升计划项目(CLSJCX23047)
通讯作者:  张健,长沙理工大学机械与运载工程学院教授,目前主要从事固态储氢材料、异质材料连接方面的研究。zj4343@163.com   
作者简介:  刘宇,硕士研究生,现就读于长沙理工大学机械与运载工程学院机械专业,目前主要研究方向为镁基储氢材料。
引用本文:    
刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
LIU Yu, ZHANG Jian, PANG Xiaotong, ZHOU Xiaojie, LU Xianzheng, CHEN Xiaomin, LI Jiahao, PENG Ping. Effect and Mechanism of Lanthanum-Nickel Series Alloy on the Microstructures and Hydrogen Storage Performance of Magnesium Hydride. Materials Reports, 2025, 39(8): 24040039-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040039  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24040039
1 Hassan Q, Sameen A Z, Salman H M, et al. Journal of Energy Storage, 2023, 72, 108404.
2 Hassan Q, Sameen A Z, Olapade O, et al. International Journal of Hydrogen Energy, 2023, 48(78), 30247.
3 Tarhan C, Çil M A. Journal of Energy Storage, 2021, 40, 102676.
4 Aba M M, Sauer I L, Amado N B. International Journal of Hydrogen Energy, 2024, 57, 660.
5 El Harrak A, Hanane A O, Shahid M, et al. International Journal of Hydrogen Energy, 2024, 52, 1182.
6 Yang X, Kong J, Lu X, et al. International Journal of Hydrogen Energy, 2024, 60, 308.
7 Meduri S, Nandanavanam J. Materials Today:Proceedings,2023, 72, 1.
8 Kumar A, Muthukumar P, Sharma P, et al. Sustainable Energy Techno-logies and Assessments, 2022, 52, 102204.
9 Li Q, Lu Y, Luo Q, et al. Journal of Magnesium and Alloys, 2021, 9(6), 1922.
10 Chang X, Zheng X, Guo Y, et al. Nano Research, 2018, 11, 2724.
11 Dan L, Wang H, Liu J, et al. ACS Applied Energy Materials, 2022, 5(4), 4976.
12 Zhou C, Peng Y, Zhang Q. Journal of Materials Science & Technology, 2020, 50, 178.
13 Song M, Zhang L, Wu F, et al. Journal of Materials Science & Technology, 2023, 149, 99.
14 Yang X, Wan H, Zhou S, et al. International Journal of Hydrogen Energy, 2023, 48(71), 27726.
15 Chen Y, Sun B, Zhang G, et al. Applied Surface Science, 2024, 645, 158801.
16 Lu H, Li J, Zhou X, et al. Journal of Materials Science & Technology, 2024, 190, 135.
17 Liu Y, Chabane D, Elkedim O. International Journal of Hydrogen Energy, 2024, 53, 394.
18 Adarmouch M, Kassaoui M E L, Jmal S A, et al. Journal of Energy Storage, 2024, 83, 110664.
19 Liu D M, Si T Z, Wang C C, et al. Scripta Materialia, 2007, 57(5), 389.
20 Liu T, Chen C, Qin C, et al. International Journal of Hydrogen Energy, 2014, 39(32), 18273.
21 Sun D, Enoki H, Bououdina M, et al. Journal of Alloys and Compounds, 1999, 282(1-2), 252.
22 Liu X, Wu S, Cai X, et al. International Journal of Hydrogen Energy, 2023, 48(45), 17202.
23 Spassov T, Delchev P, Madjarov P, et al. Journal of Alloys and Compounds, 2010, 495(1), 149.
24 Li Z, Li S, Yuan Z, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(5), 1057.
25 Cao W, Ding X, Chen R, et al. Journal of Materials Research and Technology, 2023, 25, 252.
26 Zhu X, Pei L, Zhao Z, et al. Journal of Alloys and Compounds, 2013, 577, 64.
27 Guo F, Zhang T, Shi L, et al. International Journal of Hydrogen Energy, 2020, 45(56), 32221.
28 Zhao S, Zeng W, Liu Z T, et al. Physica C: Superconductivity and Its Applications, 2023, 615, 1354394.
[1] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[2] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[3] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[4] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[5] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[6] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[7] 张鹏军, 陈国祥, 安国, 刘迎港. 铁修饰二碲化钼吸附氮化物的气敏特性研究[J]. 材料导报, 2023, 37(12): 21110219-6.
[8] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[9] 杨绍斌, 刘雪丽,张旭, 唐树伟. 羟基化平板孔中水合钠离子去溶剂化的第一性原理计算[J]. 材料导报, 2022, 36(1): 20110132-7.
[10] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[11] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[12] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[13] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed