Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030133-6    https://doi.org/10.11896/cldb.24030133
  金属与金属基复合材料 |
具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料
武金帆1, 徐芬1,*, 孙立贤1,*, 廖鹿敏2, 管彦洵2
1 桂林电子科技大学材料科学与工程学院,广西 桂林 541004
2 桂林电子科技大学电子工程与自动化学院,广西 桂林 541004
Al-Bi(C2H5OH)3-C Oxidation-resistant Bulk Materials for Hydrogen Generation
WU Jinfan1, XU Fen1,*, SUN Lixian1,*, LIAO Lumin2, GUAN Yanxun2
1 School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 6897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善铝 (Al)基复合材料的产氢性能,以乙酸铋 (Bi(C2H5OH)3)和不同碳材料为添加剂,利用高能球磨结合放电等离子烧结 (SPS)技术制备了Al-Bi(C2H5OH)3-C多孔块体制氢材料。通过X射线衍射(XRD)、扫描电子显微镜 (SEM)、射线光电子能谱 (XPS)和拉曼光谱 (Raman)对样品进行了表征,并探究了铝基块体制氢材料的产氢效率、抗氧化性能及添加剂提高Al水解活性的作用机理。研究结果显示在333.15 K下,Al-5% Bi(C2H5OH)3-3% CNTs(如无特别说明,均为质量分数)块体材料具有高的反应活性,产氢量达到了1 275.4 mL·g-1,比粉体材料高31.7%。尤其是连续暴露在空气中30天后,块体材料的产氢量仍达到921.5 mL·g-1,而粉体材料基本不产氢,证明SPS处理显著提高了Al基材料的抗氧化性能。XRD和SEM结果表明,SPS的处理使Al颗粒表面产生了裂痕,且Bi(C2H5OH)3分解产生的气体使铝基块体材料内部形成多孔结构,它们促进了Al与水的接触。同时,原位形成的Bi2O3和Bi与具有更多缺陷的碳纳米管(CNTs)协同作用是块体材料产氢性能提高的另一个因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武金帆
徐芬
孙立贤
廖鹿敏
管彦洵
关键词:  铝基块体制氢材料  产氢性能  抗氧化性能  放电等离子烧结技术  碳纳米管    
Abstract: For improving the hydrogen production performance of Al-based composites, Al-Bi(C2H5OH)3-C bulk hydrogen generation materials were prepared by high-energy ball milling and spark plasma sintering (SPS), using bismuth acetate (Bi(C2H5OH)3) and different carbon mate-rials as additives. The samples were characterized by X-ray photoelectron spectroscopy (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Moreover, the efficiency of hydrogen generation and oxidation resistance of the Al-based bulk materials as well as the action mechanism of additives for increasing hydrolytic activity of Al were investigated. The results demonstrate that Al-5% Bi(C2H5OH)3-3% CNTs (if not specified, are mass fraction) bulk material has high reactivity, and its hydrogen yield reaches 1 275.4 mL·g-1 at 333.15 K, which is 31.7% higher than the powder material. And the hydrogen yield of the bulk material still holds 921.5 mL·g-1 after exposed to the air for 35 days, while the powder material basically do not produce hydrogen. It proves that the SPS treatment significantly enhances the oxidation resistance of aluminum-based materials. The XRD and SEM analysis displays that the treatment of SPS causes cracks on the surface of Al particles, as well as the gas by the decomposition of Bi(C2H5OH)3 leads to the formation of a porous structure inside the Al-based bulk. They facilitate contact between Al and water. Meanwhile, the synergistic effect of CNTs (Carbon nanotubes) with more defects and in-situ formed Bi2O3 and Bi is another factor that improves the hydrogen production performance of the bulk materials.
Key words:  Al-based bulk materials for hydrogen generation    hydrogen generation performance    oxidation resistance    spark plasma sintering technology    carbon nanotubes
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  C01B3/08  
基金资助: 国家自然科学基金 (52271205;U20A20237;52371218;52101245);广西科技研发基金 (AA19182014);广西重点研发项目 (2021AB17045);桂林市科学技术研究开发项目 (20210102-4);广西八桂学者基金;漓江学者基金;广西新能源材料结构与性能协同创新中心;中德合作项目 (GZ1528)
通讯作者:  徐芬,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料等方面的研究。xufen@guet.edu.cn;
孙立贤,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料、机器学习等方面的研究。sunlx@guet.edu.cn   
作者简介:  武金帆,桂林电子科技大学材料科学与工程学院硕士研究生,在徐芬教授、孙立贤教授的指导下进行研究。目前主要研究方向为铝基制氢材料的制备及性能。
引用本文:    
武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
WU Jinfan, XU Fen, SUN Lixian, LIAO Lumin, GUAN Yanxun. Al-Bi(C2H5OH)3-C Oxidation-resistant Bulk Materials for Hydrogen Generation. Materials Reports, 2025, 39(8): 24030133-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030133  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030133
1 Wei Q H, Chu H L, Xia Y P, et al. Materials Reports, 2023, 37(17), 21110116 (in Chinese).
韦秋红, 褚海亮, 夏永鹏, 等. 材料导报, 2023, 37(17), 21110116.
2 Zhuang M X, Kagai S Y T, Fu W Y, et al. Materials Reports, 2023, 37(S1), 22080121 (in Chinese).
庄明兴, 卡盖·索音图, 付文英, 等. 材料导报, 2023, 37(S1), 22080121.
3 Wang L L, Ren J, Lu X Y, et al. Materials Reports, 2023, 37(12), 21070195 (in Chinese).
王留留, 任洁, 卢星宇, 等. 材料导报, 2023, 37(12), 21070195.
4 Xu S, Yu B Y. Journal of Beijing University of Technology (Social Sciences), 2021, 23(6), 1 (in Chinese).
徐硕, 余碧莹. 北京理工大学学报(社会科学版), 2021, 23(6), 1.
5 Jang D, Kim J, Kim D, et al. Energies Conversion and Management, 2022, 258, 115499.
6 Zhou D. Sino-Global Energy, 2022, 27(11), 62 (in Chinese).
舟丹. 中外能源, 2022, 27(11), 62.
7 Gao W X, An R C. China's Petrochemical, 2022(11), 42 (in Chinese).
高新伟, 安瑞超. 中国石化, 2022(11), 42.
8 Ouyang L Z, Chen W, Liu J W, et al. Advanced Energy Materials, 2017, 7(19), 1700299.
9 Zhu Y Y, Ouyang L Z, Zhong H, et al. Angewandte Chemie International Edition, 2020, 59(22), 8623.
10 Xu S, Liu J. Frontiers in Energy, 2018, 13(1), 27.
11 Tan Y H, Yang H T, Cheng J X, et al. International Journal of Hydrogen Energy, 2022, 47(90), 38134.
12 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1 (in Chinese).
邓霁峰, 陈顺鹏, 武晓娟, 等. 无机材料学报, 2021, 36(1), 1.
13 Liu G M, Xie D L. Ningbo Chemical Industry, 2019(3), 4 (in Chinese).
刘光明, 解东来. 宁波化工, 2019(3), 4.
14 Guo X L. Study on bismuth-based catalysis for hydrogen production from aluminum/water. Master's Thesis, Guilin University of Electronic Technology, China, 2020 (in Chinese).
郭晓磊. 铋基催化剂催化铝/水制氢的研究. 硕士学位论文, 桂林电子科技大学, 2020.
15 He T T, Xiong Y, Du S M, et al. Journal of Materials Engineering and Performance, 2019, 28(4), 2459.
16 Zhou T H, Xu F, Sun L X, et al. Materials Today Nano, 2023, 21, 100300.
17 Liao L M, Guo X L, Xu F, et al. Ceramics International, 2021, 47(20), 29064.
18 Dupiano P, Stamatis D, Dreizin E L. International Journal of Hydrogen Energy, 2011, 36(8), 4781.
19 Huang X N, Lv C J, Wang Y, et al. International Journal of Hydrogen Energy, 2012, 37(9), 7457.
20 Xiao F, Yang R J, Li J M. International Journal of Hydrogen Energy, 2020, 45(11), 6082.
21 Shao Y L, Sun L X, Xu F, et al. Key Engineering Materials, 2017, 727, 726.
22 Xu F, Sun L X, Lan X F, et al. International Journal of Hydrogen Energy, 2014, 39(11), 5514.
23 Wang T, Xu F, Sun L X, et al. Journal of Alloys and Compounds, 2021, 860, 157925.
24 Wang T. Construction of hydrogen generation system of Al-Bi/carbon nanotubes or Al-Bi containing compounds and mechanism study. Master's Thesis, Guilin University of Electronic Technology, China, 2021 (in Chinese).
王涛. 构建Al-Bi/碳纳米管或Al-含Bi化合物产氢体系及其机理研究. 硕士学位论文, 桂林电子科技大学, 2021.
25 Zhou T H. Study on hydrogen generation performance of tin and bismuth-containing compounds enhanced Al-water reaction. Master's Thesis, Guilin University of Electronic Technology, China, 2023 (in Chinese).
周天昊. 锡铋化合物增强铝水反应的产氢性能研究. 硕士学位论文, 桂林电子科技大学, 2023.
26 Xia S J, Zhang G H, Gao Z Y, et al. Journal of Colloid and Interface Science, 2021, 604, 798.
27 Kumar D, Muthukumar K. Journal of Alloys and Compounds, 2020, 835, 155189.
28 Wang S Y, Yang H, Wang X X, et al. Journal of Electronic Materials, 2019, 48(4), 2067.
[1] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[2] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[6] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[7] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[8] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[9] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[10] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[13] 陈卓, 谢志雄, 肖述广, 陈琪, 董仕节. 导电炭黑和热处理对Al-Bi复合材料产氢性能的影响[J]. 材料导报, 2023, 37(20): 22050247-8.
[14] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[15] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[7] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[8] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[9] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[10] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed