Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24100219-8    https://doi.org/10.11896/cldb.24100219
  无机非金属及其复合材料 |
钢纤维地聚物再生混凝土力学性能及强度指标换算
董硕1,2, 郑立森2, 史奉伟1,2,*, 王来1,2, 刘哲3
1 山东科技大学山东省土木工程防灾减灾重点实验室, 山东 青岛 266590
2 山东科技大学土木工程与建筑学院, 山东 青岛 266590
3 山东建筑大学土木工程学院, 济南 250101
Mechanical Properties and Strength Index Conversion of Steel Fiber Geopolymeric Recycled Concrete
DONG Shuo1,2, ZHENG Lisen2, SHI Fengwei1,2,*, WANG Lai1,2, LIU Zhe3
1 Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 School of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
3 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
下载:  全 文 ( PDF ) ( 21678KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以再生粗骨料替换率(0%~100%)和钢纤维体积掺量(0%~1.5%)为主要变量,设计制作了240个钢纤维地聚物再生混凝土(SFGRC)试件,并进行各项基本力学性能试验及微观形貌观测。研究结果表明:采用再生粗骨料替换天然骨料,混凝土的各项基本力学性能均会降低。当钢纤维体积掺量为1.0%时,采用再生粗骨料100%替换天然骨料的SFGRC,其立方体和轴心抗压强度、弹性模量、劈裂抗拉和抗折强度分别降低15%、9%、25%、15%和15%,峰值应变增加24%。除了弹性模量外,钢纤维的掺入可显著提高混凝土的各项力学性能,试件破坏呈延性模式;当再生粗骨料替换率为100%时,掺入1.5%钢纤维的SFGRC后,其立方体和轴心抗压强度、峰值应变、劈裂抗拉和抗折强度分别增加15%、9%、10%、65%、39%。根据试验结果并综合考虑再生粗骨料替换率和钢纤维体积掺量的影响,提出了SFGRC基本强度指标的计算公式及换算关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董硕
郑立森
史奉伟
王来
刘哲
关键词:  地聚物混凝土  钢纤维  再生粗骨料  力学性能  强度指标  经验公式    
Abstract: A total of 240 steel fiber geopolymeric recycled concrete (SFGRC) specimens were prepared, with recycled coarse aggregate replacement ratio (0%—100%) and steel fiber volume fraction (0%—1.5%) as the primary variables, and these specimens were tested for basic mechanical properties and observed for microstructural morphology. The results indicated that replacing natural aggregate with recycled coarse aggregate reduced all fundamental mechanical properties of the concrete. For SFGRC specimen with a 100% recycled aggregate replacement and 1.0% steel fiber content, its cube compressive strength, axial compressive strength, elastic modulus, splitting tensile strength, and flexural strength decreased by 15%, 9%, 25%, 15%, and 15%, respectively, while its peak strain increased by 24%. Except for elastic modulus, incorporating steel fibers significantly improved the mechanical properties of the concrete, and its failure exhibited a ductile mode. When the recycled aggregate replacement ratio reached 100% with 1.5% steel fiber content, the cube and axial compressive strength, peak strain, splitting tensile strength, and flexural strength of the specimen increased by 15%, 9%, 10%, 65%, and 39%, respectively. Based on experimental results, a series of calculation formula and conversion relationship for the fundamental strength indices of SFGRC were proposed, accounting for the effects of recycled aggregate replacement and steel fiber content.
Key words:  geopolymeric concrete    steel fiber    recycled aggregate    mechanical property    strength index    empirical formula
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU528  
基金资助: 山东省自然科学基金(ZR2023QE307;ZR2024QE480);中国博士后科学基金(2023M742143);国家资助博士后研究人员计划(GZC20231497);青岛市自然科学基金(24-4-4-zrjj-75-jch)
通讯作者:  *史奉伟,博士,山东科技大学土木工程与建筑学院讲师、硕士研究生导师。目前主要从事新材料及新结构体系关键技术的研发工作。shifengwei@sdust.edu.cn   
作者简介:  董硕,博士,山东科技大学土木工程与建筑学院讲师、硕士研究生导师。目前主要从事绿色高性能混凝土材料性能及固体废弃物综合利用等方面的研究。
引用本文:    
董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
DONG Shuo, ZHENG Lisen, SHI Fengwei, WANG Lai, LIU Zhe. Mechanical Properties and Strength Index Conversion of Steel Fiber Geopolymeric Recycled Concrete. Materials Reports, 2025, 39(7): 24100219-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100219  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24100219
1 Le H B, Bui Q B. Construction and Building Materials, 2020, 257, 119522.
2 Xiao J Z, Tang Y X, Zhang K J, et al. Engineering Mechanics, 2024, 41(2), 43(in Chinese).
肖建庄, 唐宇翔, 张凯建, 等. 工程力学, 2024, 41(2), 43.
3 Hai R, Cui L, Zhai S T, et al. Materials Reports, DOI: 10.11896/cldb.24050154 (in Chinese).
海然, 崔力, 翟胜田, 等. 材料导报, DOI: 10.11896/cldb.24050154.
4 Thomas C, Brito J, Cimentada A, et al. Construction and Building Materials, 2020, 245, 118843.
5 Kim J. Construction and Building Materials, 2022, 328, 127071.
6 Duan Z H, Deng Q, Xiao J Z, et al. Journal of Building Materials, 2022, 25(11), 1136(in Chinese).
段珍华, 邓琪, 肖建庄, 等. 建筑材料学报, 2022, 25(11), 1136.
7 Nuaklong P, Sata V, Chindaprasirt P. Journal of Cleaner Production, 2016, 112, 2300.
8 Ren X, Zhang L Y. Construction and Building Materials, 2018, 167, 749.
9 Singh N B, Middendorf B. Construction and Building Materials, 2020, 237, 117455.
10 Ding Z Y, Su Q, Li M Z, et al. Journal of Building Materials, 2023, 26(1), 61(in Chinese) .
丁兆洋, 苏群, 李明泽, 等. 建筑材料学报, 2023, 26(1), 61.
11 Dai J X, Shi X S, Wang Q Y, et al. Materials Reports, 2021, 35(9), 9077(in Chinese) .
代金芯, 石宵爽, 王清远, 等. 材料导报, 2021, 35(9), 9077.
12 Tang Z, Hu Y, Tam V W Y, et al. Cement and Concrete Composites, 2019, 104, 103375.
13 Xie J H, Wang J J, Zhang B X, et al. Construction and Building Materials, 2019, 204, 384.
14 Ding Z Y, Zhou J H, Su Q, et al. Journal of Shenyang Jianzhu University(Natural Science), 2021, 37(1), 138(in Chinese).
丁兆洋, 周静海, 苏群 等. 沈阳建筑大学学报(自然科学版), 2021, 37(1), 138.
15 Zhao Y W. Study on basic mechanical properties of geopolymer recycled concrete under compression loading. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese) .
赵岩伟. 地聚物再生混凝土受压基本力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2018.
16 Yost J R, Radlinska A, Ernst S, et al. Materials and Structures, 2012, 46, 435.
17 Sarker P K, Haque R, Ramgolam K V. Materials & Design, 2013, 44, 580.
18 Gao X, Yu Q L, Yu R, et al. Materials and Structures, 2017, 50(165), 1.
19 Zhao Q H, Dong S, Xie M. Journal of Building Structures, 2022, 43(11), 255(in Chinese).
赵秋红, 董硕, 谢萌. 建筑结构学报, 2022, 43(11), 255.
20 Li Z J, Liu X, Zhao C Y, et al. Acta Materiae Compositae Sinica, 2024, 41(10), 5516(in Chinese).
李振军, 刘喜, 赵辰宇, 等. 复合材料学报, 2024, 41(10), 5516.
21 Xia D T, Chang W J, Li B, et al. Acta Materiae Compositae Sinica, DOI:10.13801/j.cnki.fhclxb.20240723.001 (in Chinese).
夏冬桃, 常闻捷, 李彪, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20240723.001.
22 Zhang P, Wang J, Li Q, et al. Science and Engineering of Composite Materials, 2021, 28(1), 299.
23 Kumar S S, Pazhani K C, Ravisankar K. Current Science, 2017, 113(1), 116.
24 Farhan N A, Sheikh M N, Hadi M N S. ACI Materials Journal, 2020, 117(3), 29.
25 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete, GB/T 25177—2010, China Standards Press, China, 2019, pp.4(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料, GB/T 25177—2010, 中国标准出版社, 2019, pp.4.
26 Sun B B, Sun Y B, Ye G, et al. Cement and Concrete Composites, 2022, 126, 104368.
27 Ferreira L, De brito J, Barra M. Magazine of Concrete Research, 2011, 63(8), 617.
28 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures, GB 50010—2010, China Architecture & Building Press, China, 2010, pp.8(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准, GB 50010—2010, 中国建筑工业出版社, 2019, pp.8.
29 China Engineering Construction Industry Association. Standard test methods for fiber reinforced concrete, CECS 13:2009, China Planning Press, China, 2010, pp.44(in Chinese).
中国工程建设行业协会. 纤维混凝土试验方法标准, CECS 13:2009, 中国计划出版社, 2010, pp.44.
30 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General guide of quantitative analysis by EPMA, GB/T 15074—2008, Standards Press of China, China, 2009, pp.4(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 电子探针定量分析方法通则, GB/T 15074—2008, 中国标准出版社, 2009, pp.4.
[1] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[2] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[3] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[4] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[5] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[6] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[7] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[8] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[9] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[10] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[11] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[12] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[13] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[14] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[15] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed