Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24030036-7    https://doi.org/10.11896/cldb.24030036
  无机非金属及其复合材料 |
VO2智能调温涂层的研究进展
鲍艳1,*, 谢梦爽1, 郭茹月1, 张婧2
1 陕西科技大学轻工科学与工程学院, 西安 710021
2 咸阳职业技术学院医药化工学院, 陕西 咸阳 712000
Research Progress of VO2 Intelligent Temperature Control Coating
BAO Yan1,*, XIE Mengshuang1, GUO Ruyue1, ZHANG Jing2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 College of Medicine and Chemical Engineering, Xianyang Polytechnic Institute, Xianyang 712000, Shaanxi, China
下载:  全 文 ( PDF ) ( 8415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化钒(VO2)是一种典型的二元过渡金属氧化物,具有金属-绝缘体相变特性,在约68 ℃时可实现单斜绝缘相和稳定金红石金属相的可逆转变,因而在建筑领域具有良好的应用前景。近年来,VO2的制备工艺已相对成熟,但其热致变色性能的提升仍是研究的重点。基于此,本文从VO2的热致变色性能调控出发,旨在概述VO2智能调温涂层的研究进展。首先,总结了VO2相变前后的晶体结构和能带结构变化,并详细讨论了基于Mott理论、Peierls理论以及Mott与Peierls协同理论的三种相变机理;其次,总结了元素掺杂对VO2相变温度的影响规律,进一步阐明了核壳结构和多层膜结构等结构设计对VO2光学性能、抗氧化性以及环境稳定性等综合性能的增强原理,分析比较了各自的特点和优势;最后,指出了VO2现阶段存在的问题,并对其未来发展进行了展望,以期为相关领域的研究人员提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍艳
谢梦爽
郭茹月
张婧
关键词:  相变  离子掺杂  核壳结构  多层膜结构    
Abstract: Vanadium dioxide (VO2) , a typical binary transition metal oxide, has the characteristics of metal-insulator phase transformation, which can achieve the reversible transformation of monoclinic insulating phase and stable rutile metal phase at about 68 ℃, and it has a good application prospect in the construction field for it. In recent years, the preparation technology for VO2 has been relatively mature, but the improvement of its thermochromic performance is still the focus of research. Based on it, with the thermochromic performance control of VO2 as the center, this paper summarized the research progress of VO2 intelligent temperature control coatings. Firstly, the crystal structure and band structure changes of VO2 before and after the phase transition are summarized, and the three phase transition mechanisms based on the Mott theory, the Peierls theory and the Mott-Peierls synergy theory are discussed in detail. Secondly, the influence of elemental doping on the phase transition temperature of VO2 is clarified, and the enhancement principle of the structural design of core-shell structure and multilayer film structure on the comprehensive properties of VO2 such as optical properties, oxidation resistance and environmental stability is further clarified. Moreover, the characteristics and advantages of each strategy are analyzed and compared. Finally, the existing problems of VO2 at the present stage are pointed out, and its future development is prospected. It is helpful to provide reference for researchers in related fields.
Key words:  phase transitions    ion doping    core-shell structure    multilayer membrane structure
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TQ135.11  
基金资助: 国家自然科学基金(22378253;22078188);咸阳市科技计划项目(2021ZDZX-GY-0007);陕西省科技厅项目(2022GY-170)
通讯作者:  *鲍艳,二级教授,博士研究生导师,享受国务院政府特殊津贴。长期从事有机/无机纳米复合功能化学品的研究。baoyan@sust.edu.cn   
引用本文:    
鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
BAO Yan, XIE Mengshuang, GUO Ruyue, ZHANG Jing. Research Progress of VO2 Intelligent Temperature Control Coating. Materials Reports, 2025, 39(7): 24030036-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030036  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24030036
1 Santamouris M. Minimizing energy consumption, energy poverty and global and local climate change in the built environment:innovating to zero:causalities and impacts in a zero concept world, Elsevier, UK, 2018, pp.167.
2 Enríquez E, Fuertes V, Solar Energy, 2017, 149, 114.
3 Shi R, Shen N, Wang J, et al. Applied Physics Reviews, 2019, 6(1), 011312.
4 Coşkun M, Altınöz S, Coşkun Ö D. Photonics and Nanostructures-Fundamentals and Applications, 2022, 49, 100993.
5 Günther A, Lohringer H, Müller D, et al. Journal of Physics and Che-mistry of Solids, 2022, 170, 110897.
6 Fukawa A, Nakazawa T, Tamura J, et al. Applied Physics Letters, 2023, 122, 052403.
7 Rana A, Li C, Koster G, et al. Scientific Reports, 2020, 10(1), 3293.
8 Lu Y C, Hsueh C H. ACS Applied Nano Materials, 2022, 5(2), 2923.
9 Thangappan R, Kumar R D, Jayavel R. Diamond and Related Materials, 2023, 137, 110102.
10 Wang S, Liu M, Kong L, et al. Progress in Materials Science, 2016, 81, 1.
11 Morin F J. Physical review letters, 1959, 3(1), 34.
12 Fillingham P J. Journal of Applied Physics, 1967, 38(12), 4823.
13 Eyert V. Annalen der Physik, 2002, 514(9), 650.
14 Liu H, Lu J, Wang X R. Nanotechnology, 2017, 29(2), 024002.
15 Guo Y, Zhang Y, Zhang L, et al. Materials Research Express, 2018, 6(2), 026409.
16 Jana A, Sahoo S, Chowdhury S, et al. Physical Review B, 2022, 106(20), 205123.
17 Ergün Y, Jeckelmann E. Physical Review B, 2020, 101(8), 085403.
18 Quackenbush N F, Paik H, Holtz M E, et al. Physical Review B, 2017, 96(8), 081103.
19 Xue Y, Yin S. Nanoscale, 2022, 14(31), 11054.
20 Qin S, Fan Y, Qiu X, et al. ACS Applied Electronic Materials, 2022, 4(12), 6067.
21 Zhao Z, Liu Y, Wang D, et al. Solar Energy Materials and Solar Cells, 2020, 209, 110443.
22 Li Z, Liu X, Li W, et al. Vacuum, 2021, 184, 109903.
23 Krammer A, Matilainen A, Pischow K, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111680.
24 Victor J L, Gaudon M, Salvatori G, et al. The Journal of Physical Che-mistry Letters, 2021, 12(32), 7792.
25 Hunt G M, Miragliotta J A, Ginn J, et al. Applied Physics Letters, 2023, 123(7), 071103.
26 Verma D, Chandran Y, Uniyal P, et al. Journal of the American Ceramic Society, 2023, 106(7), 4321.
27 Bao Y, Guo R, Ge X, et al. Progress in Organic Coatings, 2023, 180, 107574.
28 Chen F, Yuan L, Wu X, et al. Ceramics International, 2023, 49(15), 25585.
29 Zhao C, Li Z, Sun S, et al. Vacuum, 2022, 203, 111309.
30 Zhang Y, Tan X, Huang C, et al. Materials Research Innovations, 2015, 19(4), 295.
31 Zhao Z, Li D, Yang J, et al. Applied Surface Science, 2023, 635, 157705.
32 Outón J, Casas-Acuña A, Domínguez M, et al. Applied Surface Science, 2023, 608, 155180.
33 Suleiman A O, Mansouri S, Margot J, et al. Applied Surface Science, 2022, 571, 151267.
34 Kurajica S, Mandić V, Panžić I, et al. Nanomaterials, 2020, 10(12), 2537.
35 Huang T, Kang T, Li Y, et al. Optical Materials Express, 2018, 8(8), 2300.
36 Bleu Y, Bourquard F, Barnier V, et al. Materials, 2023, 16(1), 461.
37 Ding X, Li Y, Zhang Y. Molecules, 2023, 28(9), 3778.
38 Pei R, Ma X, Han C, et al. Zeitschrift für Anorganische und Allgemeine Chemie, 2022, 648(14), e202200132.
39 Zou Z, Zhang Z, Xu J, et al. Journal of Alloys and Compounds, 2019, 806, 310.
40 Wang L, Hao Y Q, Ma W, et al. Rare Metals, 2021, 40, 1337.
41 Wang S, Wei W, Huang T, et al. Advanced Engineering Materials, 2019, 21(12), 1900947.
42 Cui Y, Cao C, Chen Z, et al. Computational Materials Science, 2017, 130, 103.
43 Liu Y, Jiang T, Lv Y, et al. Materials Research Express, 2023, 10(3), 035008.
44 Haji H F, Numan N, Madiba I G, et al. Journal of Electronic Materials, 2023, 52(6), 4020.
45 Xie D, Li Y, Liu Y, et al. Catalysis Letters, 2023, 154, 1847.
46 Baqir M A, Choudhury P K, Naqvi Q A, et al. IEEE Access, 2020, 8, 84850.
47 Li D, Deng S, Zhao Z, et al. Applied Surface Science, 2022, 598, 153741.
48 Sun X, Qu Z, Yuan J, et al. Ceramics International, 2021, 47(20), 29011.
49 Wen Z, Ke Y, Feng C, et al. Advanced Materials Interfaces, 2021, 8(1), 2001606.
50 Saini M, Dehiya B S, Umar A. Ceramics International, 2020, 46(1), 986.
51 Pi J, Li C B, Sun R Y, et al. Composites Communications, 2022, 32, 101167.
52 Lu Y, Cao Z, Chen C, et al. Ceramics International, 2023, 49(11), 19541.
53 Qu Z, Yao L, Ma S, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109920.
54 Liu Y, Sun R, Jin B, et al. ACS Applied Nano Materials, 2022, 5(4), 5599.
55 Liu Y, Xu W Z, Charpentier P A. Progress in Organic Coatings, 2020, 142, 105589.
56 Bleu Y, Bourquard F, Poulet A, et al. Ceramics International, 2023, 49(9), 13542.
57 Xu F, Cao X, Shao Z, et al. ACS Applied Materials & Interfaces, 2019, 11(5), 4712.
[1] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[2] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[3] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[6] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[7] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[8] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[9] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[10] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[11] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[12] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[13] 范晓燕, 赵雪婷, 欧志强. 塑晶材料及其压卡效应研究发展与展望[J]. 材料导报, 2024, 38(5): 22080087-8.
[14] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[15] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed