Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24020060-7    https://doi.org/10.11896/cldb.24020060
  无机非金属及其复合材料 |
吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能
汤云1,*, 习敏娟1, 王许辉1, 邓乐淳2, 陈强2,*
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 西北工业大学材料学院,西安 710072
Preparation and Properties of Absorption-dominated Ni/Ni@Ag/EP Electromagnetic Shielding Coating
TANG Yun1,*, XI Minjuan1, WANG Xuhui1, DENG Lechun2, CHEN Qiang2,*
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 34971KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为缓解海洋环境中电磁辐射困境,同时减少二次电磁波污染,开发耐腐蚀的吸收主导型电磁屏蔽涂层十分必要。本工作采用化学镀和冷喷涂法成功制备出具有高吸收、高电磁屏蔽效能和耐盐雾腐蚀的Ni/Ni@Ag/环氧树脂(EP)双层涂层。该涂层以高磁性Ni/EP层作为阻抗匹配吸收层,高导电性Ni@Ag/EP层作为反射层。因此,电磁波易于进入涂层内部,并通过吸收层中磁介电损耗的协同作用、反射层的反射,以及上下层界面的干涉效应等共同作用使电磁波衰减,最终所制备的Ni/Ni@Ag/EP涂层在X波段表现出高电磁屏蔽效能(均值为64.3 dB)和高吸收功率系数(0.74)。此外,盐雾试验和电化学阻抗谱结果证明了Ni/Ni@Ag/EP涂层良好的耐盐雾腐蚀性能。本工作的成果为设计适用于海洋环境、具有吸收主导特性的高效电磁屏蔽涂层提供了一种可行的策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤云
习敏娟
王许辉
邓乐淳
陈强
关键词:  电磁屏蔽  吸收主导型  双层结构  耐盐雾腐蚀  Ni@Ag    
Abstract: In order to alleviate the electromagnetic radiation dilemma in the marine environment and reduce the secondary electromagnetic wave pollution, it is necessary to develop an absorption-dominated electromagnetic shielding coating with corrosion resistance. In this work, Ni/Ag-coated Ni (Ni@Ag)/epoxy resin (EP) double-layer coating with high absorption, high electromagnetic interference shielding effectiveness (EMI SE) and good salt spray corrosion resistance was successfully prepared by electroless plating and cold spraying. The coating was constructed with high magnetic Ni/EP as the upper impedance matching absorption layer and high conductivity Ni@Ag/EP as the lower reflective layer. Therefore the electromagnetic wave was easy to enter the interior of the double-layer coating, and could be effectively attenuated by the synergistic effect of magnetic loss and dielectric loss in the absorption layer, the reflection effect of the reflective layer, and the interference effect of the interface. The ultimate product Ni/Ni@Ag/EP double-layer coating exhibited excellent average EMI SE of 64.3 dB and high absorption coefficient of 0.74 in X band. In addition, the salt spray test and electrochemical impedance spectroscopy results proved the satisfactory salt spray corrosion resistance of Ni/Ni@Ag/EP double-layer coating. The output of this study provides a feasible strategy for the design of efficient electromagnetic shielding coating with absorption-dominant characteristics serving in marine environment.
Key words:  electromagnetic shielding    absorption-dominated    double-layer structure    salt spray corrosion resistance    Ni@Ag
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB331  
基金资助: 陕西省杰出青年科学基金(2023-JC-JQ-35)
通讯作者:  *汤云,博士,西安建筑科技大学材料科学与工程学院教授、博士研究生导师。主要从事电磁屏蔽材料、钙钛矿量子点发光材料等方面的研究。
陈强,博士,西北工业大学材料学院副教授、博士研究生导师。主要从事特种电磁防护材料、仿生涂层材料等方面的研究。tangyun@xauat.edu.cn;chenqiang0213@126.com   
作者简介:  汤云,博士,西安建筑科技大学材料科学与工程学院教授、博士研究生导师。主要从事电磁屏蔽材料、钙钛矿量子点发光材料等方面的研究。
引用本文:    
汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
TANG Yun, XI Minjuan, WANG Xuhui, DENG Lechun, CHEN Qiang. Preparation and Properties of Absorption-dominated Ni/Ni@Ag/EP Electromagnetic Shielding Coating. Materials Reports, 2025, 39(6): 24020060-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020060  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24020060
1 Chung D D L.Materials Chemistry and Physics,2020,255,123587.
2 Xia X F,Xiao Q L.Nanomaterials,2021,11,2929.
3 Jiang D W,Murugadoss V,Wang Y,et al.Polymer Reviews,2019,59,280.
4 Zhao J P.Chinese Journal of Ship Research,2020,15(4),105 (in Chinese).
赵金鹏.中国舰船研究,2020,15(4),105.
5 Li M Y,Liao H M,Wang J.Composites Part A:Applied Science and Manufacturing,2023,173,107637.
6 Zhang M,Han C,Cao W Q,et al.Nano-Micro Letters,2021,13,27.
7 Chen Y,Pötschke P,Pionteck J,et al.ACS Applied Materials & Interfaces,2020,12,22088.
8 Jia Z R,Wang C,Feng A L,et al.Composites Part B:Engineering,2020,183,107690.
9 Sheng A,Ren W,Yang Y Q,et al.Composites Part A:Applied Science and Manufacturing,2020,129,105692.
10 Mai T,Guo W Y,Wang P L,et al.Chemical Engineering Journal,2023,464,142517.
11 Xu L,Wan S,Heng Y Q,et al.Composites Science and Technology,2023,231,109797.
12 Hu B.Surface modification of Ni particles and their anticorrosion and microwave absorption properties.Master's Thesis,Harbin Institute of Technology,China,2022 (in Chinese).
胡波.金属Ni微粒的表面修饰及其防腐与吸波性能.硕士学位论文,哈尔滨工业大学,2022.
13 Xu W Y,Sun J W,Zhu Y F.Chinese Journal of Materials Research,2023,37(12),952 (in Chinese).
徐文玉,孙佳文,朱曜峰.材料研究学报,2023,37(12),952.
14 Li M,Zhang M,Zhao Y,et al.Carbohydrate Polymers,2022,286,119306.
15 Lv H L,Yang Z H,Wang P L,et al.Advanced Materials,2018,30,1706343.
16 Song W L,Cao M S,Wen B,et al.Materials Research Bulletin,2012,47,1747.
17 Huang W,Wang X,Li Y Q,et al.Materials Reports,2023,37(7),19 (in Chinese).
黄威,王轩,李永清,等.材料导报,2023,37(7),19.
18 Ji H Y,Guo X Q,Feng D S,et al.Modern Chemical Research,2022(20),1 (in Chinese).
纪涵昱,郭晓琴,冯德胜,等.当代化工研究,2022(20),1.
19 Zhao B,Zhang X,Deng J S,et al.Physical Chemistry Chemical Physics,2018,20,28623.
20 Ryu S H,Han Y K,Kwon S J,et al.Chemical Engineering Journal,2022,428,131167.
21 Li L X,Xie Z H,Fernandez C,et al.Electrochimica Acta,2020,330,135186.
22 Xu L,Yang X N,Fu X,et al.Progress in Organic Coatings,2022,171,107045.
23 Dong H Y,Zhan Y Q,Chen Y W,et al.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,664,131086.
24 Li J Y,Zhu K,Fu Z L.Journal of Polymer Engineering,2023,43,443.
25 Wang H H,Ye M Y,Fei G Q,et al.Acta Materiae Compositae Sinica,2024,41(4),18953 (in Chinese).
王海花,叶梦玉,费贵强,等.复合材料学报,2024,41(4),18953.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[3] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[4] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[5] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[6] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[7] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[8] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[9] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[10] 张凯, 吴连锋, 桂泰江, 丛巍巍. 电磁屏蔽材料的研究与进展[J]. 材料导报, 2021, 35(z2): 513-515.
[11] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[12] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[13] 米海娜, 于建芳, 王哲, 张涛, 郭继然, 王喜明. 具有保健功效木材的制备及其特性研究进展[J]. 材料导报, 2021, 35(11): 11215-11221.
[14] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[15] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed