Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23120250-8    https://doi.org/10.11896/cldb.23120250
  无机非金属及其复合材料 |
冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响
梁志超1,†, 任文渊1,†, 李双村1, 张爱军1,2,*, 王毓国3
1 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
2 西京学院土木工程学院,西安 710000
3 西安建筑科技大学交叉创新研究院,西安 710000
Effect of Soluble Saltand Freeze-thaw Cycle on Strength Deterioration and Water Stability of Lime-treated Ili Loess
LIANG Zhichao1,†, REN Wenyuan1,†, LI Shuangcun1, ZHANG Aijun1,2,*, WANG Yuguo3
1 College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, Shaanxi, China
2 College of Civil engineering, Xijing University, Xi'an 710000, China
3 Institute for Interdisciplinary and Innovation Research, Xi'an University of Architecture and Technology, Xi'an 710000, China
下载:  全 文 ( PDF ) ( 17091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冻融作用和易溶盐是诱发寒区输水渠道土体破坏的重要原因。通过无侧限抗压强度试验、崩解试验、渗透试验和核磁共振试验,分析了冻融作用和易溶盐含量对石灰固化伊犁黄土强度、水稳性以及孔隙结构的影响规律及程度。研究结果表明:冻融作用对石灰固化伊犁黄土强度有明显的劣化作用,冻融前期强度劣化严重,且易溶盐含量越高,冻融作用对强度劣化程度越严重。当易溶盐含量高于14 g/kg时,强度衰减趋势减小。冻融循环次数和易溶盐含量的增加会加速石灰固化伊犁黄土的崩解,且易溶盐含量对其水稳性影响较大,当易溶盐含量高于8 g/kg时,试样崩解速率增速明显。渗透性随着冻融循环次数和易溶盐含量增大而增大,且冻融作用比易溶盐含量对渗透性影响更大;当易溶盐含量为26 g/kg时,由于渗透吸力的作用,渗透系数明显减小。冻融作用使得土体孔隙模态尺寸增大,主要影响了中孔隙和大孔隙;易溶盐含量对孔隙结构的影响弱于冻融作用。考虑冻融作用和控制易溶盐含量对寒区土体的强度及水稳性至关重要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁志超
任文渊
李双村
张爱军
王毓国
关键词:  石灰处理  伊犁黄土  冻融  易溶盐含量  强度劣化  水稳性    
Abstract: Freeze-thaw cycle and soluble salt are main reasons for the damage of soils of water conveyance channels in cold regions. To explore the influence mechanism and degree of freeze-thaw cycle and soluble salt content on strength, water stability and pore structure of lime-treated Ili loess, unconfined compressive strength test, disintegration test, permeability test and nuclear magnetic resonance test are employed here. The results show that the freeze-thaw cycle has obvious deterioration on the strength of lime-treated Ili loess. The deterioration of strength is serious in early freeze-thaw cycle stage, and the higher the content of soluble salt, the deterioration of strength due to freeze-thaw cycle. When the content of soluble salt is higher than 14 g/kg, the deterioration rate on the strength decreases. The disintegration of lime solidified Ili loess is accelerated with the increase of freeze-thaw cycles and soluble salt content, and the soluble salt content has a great effect on loess water stability. When the soluble salt content is higher than 8 g/kg, the disintegration rate increased significantly. The permeability increases with the increase of freeze-thaw cycle and soluble salt content, and the effect of freeze-thaw cycle is more significant than that of soluble salt content. When the content of soluble salt is 26 g/kg, the permeability coefficient decreases obviously due to the effect of osmotic suction. The modal size of loess pores increases with freeze-thaw cycle increasing, which mainly affects the medium pores and large pores. And the effect of freeze-thaw cycle on pore structure of loess is higher than that of soluble salt content. Considering freeze-thaw cycle and controlling soluble salt content is very important for strength and water stability of soil in cold region.
Key words:  lime treated    Ili loess    freeze-thaw    salt content    strength degradation    water stability
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TU432  
基金资助: 国家自然科学基金面上项目(51978572)
通讯作者:  *张爱军,西北农林科技大学水利与建筑工程学院教授、博士研究生导师。目前主要从事非饱和黄土力学及其工程应用、湿陷性黄土地区改良技术等方面研究。zaj@nwafu.edu.cn   
作者简介:  梁志超,现为西北农林科技大学水利与建筑工程学院博士研究生,在张爱军教授的指导下进行研究。目前主要研究领域为伊犁黄土及石灰改良黄土力学特性及本构模型研究。
†共同第一作者
引用本文:    
梁志超, 任文渊, 李双村, 张爱军, 王毓国. 冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响[J]. 材料导报, 2025, 39(6): 23120250-8.
LIANG Zhichao, REN Wenyuan, LI Shuangcun, ZHANG Aijun, WANG Yuguo. Effect of Soluble Saltand Freeze-thaw Cycle on Strength Deterioration and Water Stability of Lime-treated Ili Loess. Materials Reports, 2025, 39(6): 23120250-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120250  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23120250
1 Yang A W, Yang S K, Wang Z, et al. Journal of Basic Science and Engineering, 2023, 31(1), 65(in Chinese).
杨爱武, 杨少坤, 王峥, 等. 应用基础与工程科学学报, 2023, 31(1), 65.
2 Wang Z Z, Jiang H Y, WANG Y, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22), 120(in Chinese).
王正中, 江浩源, 王羿, 等. 农业工程学报, 2020, 36(22), 120.
3 Deng Z D, Zhan X X, Shu J J, et al. Advanced Engineering Sciences, 2022, 54(2), 150(in Chinese).
邓正定, 詹兴欣, 舒佳军, 等. 工程科学与技术, 2022, 54(2), 150.
4 Liang Z C, Zhang A J, Ren W Y, et al. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5), 90(in Chinese).
梁志超, 张爱军, 任文渊, 等. 农业工程学报, 2023, 39(5), 90.
5 Liang Z C, Zhang A J, Ren W Y, et al. Bulletin of Engineering Geology and Environment, 2023, 82, 241.
6 Zhang A J, Wang Y G, Xing Y C, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(6), 1040(in Chinese).
张爱军, 王毓国, 邢义川, 等. 岩土工程学报, 2019, 41(6), 1040.
7 Niu L S, Zhang A J, Zhao J M, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(9), 1705(in Chinese).
牛丽思, 张爱军, 赵佳敏, 等. 岩土工程学报, 2020, 42(9), 1705.
8 Niu L S, Ren W Y, Zhang A J, et al. Bulletin Engineering Geology and the Environment, 2021, 80, 6689.
9 An P, Zhang A J, Xing Y C, et al. Rock and Soil Mechanics, 2017, 38(2), 557(in Chinese).
安鹏, 张爱军, 邢义川, 等. 岩土力学, 2017, 38(2), 557.
10 Ying Z, Cui Y J, Benahmed N et al. Construction and Building Materials, 2021, 303, 1.
11 Lyu J, Zhao H, Zhang J et al. Materials Reports, 2024, 38(7), 22110321(in Chinese).
吕晶, 赵欢, 张金翼, 等. 材料导报, 2024, 38(7), 22110321.
12 Zhang D, Wang H, Chen S et al. Materials Reports, 2023, 37(10), 133(in Chinese).
张典, 王辉, 陈绍华, 等. 材料导报, 2023, 37(10), 133.
13 Pu S Y, Zhu Z D, Wang H R, et al. Construction and Building Materials, 2019, 214, 111.
14 Guney Y, Sari D, Cetin M, et al. Building and Environment, 2007, 42(2), 681.
15 Wang Y J, Cui Y J, Tang A M, et al. Engineering Geology, 2016, 202, 114.
16 Khattab SAA, Al-Taie LKhI. Soil-water characteristic curves (SWCC) for lime treated expansive soil from Mosul City. Unsaturated soils, 2006, pp.5.
17 Liu K, Liu L, Zhang Y P. Journal of Building Materials, 2022, 25(5), 545(in Chinese).
刘科, 刘霖, 张永鹏. 建筑材料学报, 2022, 25(5), 545.
18 Liu Y W, Wang Q, Liu S W, et al. Cold Regions Science and Technology, 2019, 161, 32.
19 Chai S X, Wang X Y, Wang P, et al. Rock and Soil Mechanics, 2009, 30(2), 305(in Chinese).
柴寿喜, 王晓燕, 王沛, 等. 岩土力学, 2009, 30(2), 305.
20 Chai S X, Wang X Y, Zhong X M, et al. Rock and Soil Mechanics, 2008, 11, 3066(in Chinese).
柴寿喜, 王晓燕, 仲晓梅, 等. 岩土力学, 2008, 11, 3066.
21 Chai S X, Yang B Z, Wang X Y, et al. Rock and Soil Mechanics, 2008, 7, 1769(in Chinese).
柴寿喜, 杨宝珠, 王晓燕, 等. 岩土力学, 2008, 7, 1769.
22 Lv Q F, Jia M X, Wang S X, et al. Journal of Central South University (Science and Technology), 2018, 49(3), 718(in Chinese).
吕擎峰, 贾梦雪, 王生新, 等. 中南大学学报(自然科学版), 2018, 49(3), 718.
23 Li M, Yu H M, Du H P, et al. Rock and Soil Mechanics, 2022, 43(2), 489(in Chinese) .
李敏, 于禾苗, 杜红普, 等. 岩土力学, 2022, 43(2), 48.
24 Wang Y J, Duc M, Cui Y J, et al. Applied Clay Science, 2017, 136, 58.
25 Ying, Z, Cui, Y J, Benahmed, N, et al. Engineering Geology, 2021, 293, 106334.
26 Jiang P, Chen Y W, Chen X H, et al. Journal of Jilin University (Engineering and Technology Edition) 2023, 53(6), 1809(in Chinese).
姜屏, 陈业文, 陈先华, 等. 吉林大学学报(工学版), 2023, 53(6), 1809.
27 Li X M, Zhang H Y, Wu D, et al. Rock and Soil Mechanics, 2023, 44(6), 1593(in Chinese).
李新明, 张浩扬, 武迪, 等. 岩土力学, 2023, 44(6), 1593.
28 Liu C L, Liu F Y, Huang S J, et al. Journal of Glaciology and Geocryology, 2022, 44(6), 1833(in Chinese).
刘春龙, 刘奉银, 黄素娟, 等. 冰川冻土, 2022, 44(6), 1833.
29 Jiang D S, Li X H, Fan X K, et al. Bulletion of Soil and Water Conservation, 1995, 15 (3), 20.
30 Ye W J, Li C Q. Bulletin of EngineeringGeology and the Environment , 2018, 78, 2125.
31 Kong F S, Nie L, Xu Y, et al. Catena, 2022, 209(P1), 56.
32 Liang Z C, Hu Z Q, Guo J, et al. Journal of Hydroelectric Engineering, 2020, 39(3), 66(in Chinese).
梁志超, 胡再强, 郭婧, 等. 水力发电学报, 2020, 39(3), 66.
33 Li T G, Kong L W, Wang J T, et al. Rock and Soil Mechanics, 2021, 42(10), 2741(in Chinese).
李甜果, 孔令伟, 王俊涛, 等. 岩土力学, 2021, 42(10), 2741.
[1] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[2] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[3] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[4] 张学鹏, 张戎令, 杨斌, 肖鹏震, 王小平, 龙朝飞. 冻融-硫酸盐腐蚀耦合作用下早龄期混凝土强度演变及预测模型研究[J]. 材料导报, 2024, 38(5): 22080059-9.
[5] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[6] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[7] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[8] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[9] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[10] 石东升, 张鹏, 姜文超, 韩平, 马政. 生活垃圾焚烧渣细骨料混凝土冻融及自愈试验[J]. 材料导报, 2023, 37(19): 22030250-5.
[11] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[12] 卢喆, 姚文娟, 王社良, 王善伟, 刘博. 复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J]. 材料导报, 2023, 37(12): 22010153-9.
[13] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[14] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[15] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[9] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
[10] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed