Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 24010136-7    https://doi.org/10.11896/cldb.24010136
  无机非金属及其复合材料 |
基于γ-C2S的蜂窝陶瓷常温制备与性能研究
邹家伟1, 刘志超1,2,*, 王发洲2
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
Room Temperature Preparation of γ-C2S-based Honeycomb Ceramics and Their Properties
ZOU Jiawei1, LIU Zhichao1,2,*, WANG Fazhou2
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 17711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在污染排放物处理系统中,蜂窝陶瓷作为关键组件常常需要在高温条件下制备。提出一种新型制备方法,利用γ-C2S在常温下通过碳化养护方式制备蜂窝陶瓷,避免了高温烧结。以γ-C2S为原料,通过添加硅灰、减水剂、塑化剂和水等,调控坯料塑性,经碳化养护后获得力学性能优异的蜂窝陶瓷。研究了增稠剂掺量与预干燥制度对蜂窝陶瓷抗压强度的影响规律,分析了不同碳化时长下蜂窝陶瓷的强度发展与微观结构变化。结果表明:羟丙基甲基纤维素醚(HPMC)掺量为2.5%(质量分数,如无特别说明,下同),碳化养护前将试样预干燥至0.10剩余水固比,在0.3 MPa CO2分压条件下养护12 h,试样抗压强度可达46.8 MPa。碳化过程中生成的方解石型碳酸钙填充了孔隙,使材料结构更加致密,这是蜂窝陶瓷试样强度迅速发展的主要原因。掺入2.5%TiO2制成整体式蜂窝陶瓷催化剂,利用其光催化80 min后甲基橙降解率达到45.12%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹家伟
刘志超
王发洲
关键词:  γ-C2S  免烧结蜂窝陶瓷  碳化  力学性能  TiO2负载    
Abstract: In the context of pollution abatement systems, the preparation of honeycomb ceramics, a pivotal constituent, conventionally necessitates elevated temperature conditions. This research introduces an innovative preparation methodology, proposing the utilization of γ-C2S for the ambient temperature fabrication of honeycomb ceramics through a carbonation curing process, thereby obviating the need for high-temperature sintering. Employing γ-C2S as the primary raw material and incorporating silica fume, water-reducing agents, plasticizers, and water, the plasticity of the raw mixture was meticulously controlled to attain superior mechanical properties in the honeycomb ceramics subsequent to carbonation curing. This study systematically examined the impact of thickening agent content and pre-drying protocols on the compressive strength of honeycomb ceramics. Concurrently, an in-depth analysis of the strength progression and microstructural alterations in honeycomb ceramics subjected to varying durations of carbonation was conducted. The outcomes reveal that an HPMC content of 2.5wt%, pre-drying the samples to a residual moisture content of 0.10, and 12 h of curing under 0.3 MPa CO2 pressure yield a compressive strength of 46.8 MPa in the specimens. The genesis of aragonite-type calcium carbonate during carbonation serves to fill the pores, culminating in heightened material density. This phenomenon stands as the predominant factor contributing to the expeditious advancement of strength in the honeycomb ceramic samples. The monolithic honeycomb ceramic catalyst was made by doping 2.5wt% TiO2, and the methyl orange degradation rate reached 45.12% after 80 min of photocatalysis.
Key words:  γ-C2S    non-sintering honeycomb ceramics    carbonation    mechanical property    TiO2-supported
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U2001227)
通讯作者:  *刘志超,博士,武汉理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事低碳胶凝材料、超高性能水泥基材料方面的研究。liuzc9@whut.edu.cn   
作者简介:  邹家伟,武汉理工大学材料科学与工程学院硕士研究生,研究方向为挤出成型碳矿化材料的制备。
引用本文:    
邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
ZOU Jiawei, LIU Zhichao, WANG Fazhou. Room Temperature Preparation of γ-C2S-based Honeycomb Ceramics and Their Properties. Materials Reports, 2025, 39(4): 24010136-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010136  或          https://www.mater-rep.com/CN/Y2025/V39/I4/24010136
1 Hao L M, Huang F H, Wang Y W, et al. Foshan Ceramics, 2021, 31(6), 33 (in Chinese).
郝立苗, 黄妃慧, 王勇伟, 等. 佛山陶瓷, 2021, 31(6), 33.
2 Wang L L, Ma B Y, Liu C M. Refractories, 2022, 56(1), 82 (in Chinese).
王露露, 马北越, 刘春明. 耐火材料, 2022, 56(1), 82.
3 Du Y F, Wen B L, Shu R L, et al. Ceramics International, 2021, 47(24), 34829.
4 Sheng Y L, Peng J F, Ma L, et al. Carbon, 2022, 197, 172.
5 Chen S. Preparation and properties of micron pore silicon carbide porous ceramics. Master’s Thesis, Wuhan Institute of Technology, China, 2022 (in Chinese).
陈松. 微米孔径碳化硅多孔陶瓷的制备及性能研究. 硕士学位论文, 武汉工程大学, 2022.
6 Du L J, Liu W, Hu S L, et al. Journal of the European Ceramic Society, 2014, 34(3), 731.
7 Xiao R, Qin R X, Zhang C X, et al. Journal of Rare Earths, 2021, 39(7), 824.
8 Zhang Q S, Liu Y C, Zeng L K. China Ceramic Industry, 2015, 22(4), 11 (in Chinese).
张全胜, 刘艳春, 曾令可. 中国陶瓷工业, 2015, 22(4), 11.
9 Tan Y C, Liu Z C, Wang F Z. Materials Reports, 2023, 37(1), 77 (in Chinese).
谭益成, 刘志超, 王发洲. 材料导报, 2023, 37(1), 77.
10 Jiang T, Cui K, Chang J. Cement and Concrete Composites, 2023, 24, 105071.
11 Zhao S X, Liu Z C, Wang F Z, et al. ACS Sustainable Chemistry & Engineering, 2021, 9, 6673.
12 Lei M, Deng S M, Huang K Y, et al. Construction and Building Materials, 2022, 353, 129112.
13 Zeng H M, Liu Z C, Wang F Z. Journal of Chinese Ceramic Society, 2022, 48(11), 1801 (in Chinese).
曾海马, 刘志超, 王发洲. 硅酸盐学报, 2022, 48(11), 1801.
14 Wu S K, Huang T Y, Xie Y, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(6), 1898 (in Chinese).
吴胜坤, 黄天勇, 谢岩, 等. 硅酸盐通报, 2023, 42(6), 1898.
15 Liu S H, Zhang C, Guang X M. Journal of Chinese Ceramic Society, 2023, 51(9), 2166 (in Chinese).
刘松辉, 张程, 管学茂. 硅酸盐学报, 2023, 51(9), 2166.
16 Mu Y D. Carbonation-induced hardening mechanism of calcium silicate minerals and the performance-enhancing strategies of the carbonated materials. Ph. D. Thesis, Wuhan University of Technology, China, 2019 (in Chinese).
穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究. 博士学位论文, 武汉理工大学, 2019.
17 Zhou C S, Ren F Z, Wang Z D, et al. Cement and Concrete Research, 2017, 100, 379.
18 Zhang L Y, Yang J J, You J. Materials Reports, 2023, 37(4), 47 (in Chinese).
张理元, 阳金菊, 尤佳. 材料导报, 2023, 37(4), 47.
19 Zhong K N, Liu Z C, Wang F Z. Additive Manufacturing, 2023, 65, 103442.
20 Mu Y D, Liu Z C, Wang F Z. ACS Sustainable Chemistry & Engineering, 2019, 7(7), 7058.
21 Huang S, Zhang W Q, Liu Z C, et al. Materials Reports, 2023, 37(19), 124 (in Chinese).
黄帅, 张文芹, 刘志超, 等. 材料导报, 2023, 37(19), 124.
22 Dong B, Deng C J, Yu C, et al. Journal of Ceramics, 2023, 44(1), 90 (in Chinese).
董博, 邓承继, 余超, 等. 陶瓷学报, 2023, 44(1), 90.
23 Yu C, Wu Z M, Ding J, et al. Ceramics International, 2019, 45(13), 16612.
24 Cao J F. Preparation and properties of aluminum titanate honeycomb porous ceramics. Master’s Thesis, Kunming University of Science and Technology, China, 2022 (in Chinese).
曹江峰. 钛酸铝蜂窝多孔陶瓷的制备与性能研究. 硕士学位论文, 昆明理工大学, 2022.
25 Liang H L, Wu Y X, Zhao C L, et al. Journal of Ceramics, 2017, 38(5), 666 (in Chinese).
梁海龙, 吴彦霞, 赵春林, 等. 陶瓷学报, 2017, 38(5), 666.
26 Wu J F, He D Z, Xu X H, et al. Energy Storage Science and Technology, 2016, 5(4), 568 (in Chinese).
吴建锋, 何德芝, 徐晓虹, 等. 储能科学与技术, 2016, 5(4), 568.
27 Chen Z, Xu Z K, Cui F D, et al. Journal of the European Ceramic Society, 2022, 42(4), 1685.
28 Ou Z H, Ma B G, Jian S W. Journal of Building Materials, 2013, 16(1), 126 (in Chinese).
欧志华, 马保国, 蹇守卫. 建筑材料学报, 2013, 16(1), 126.
29 Lu L L, Shan R, Shi Y Y, et al. Chemosphere, 2019, 222, 392.
30 Zhang Y L, Xiao G F, Li J H, et al. China Environmental Science, 2021, 41(8), 3546 (in Chinese).
张益兰, 肖高飞, 李剑晗, 等. 中国环境科学, 2021, 41(8), 3546.
31 Choi J H, Hwang J, Kim G, et al. Ceramics International, 2021, 47(5), 7246.
[1] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[2] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[3] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[4] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[5] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
[8] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[9] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[10] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[13] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[14] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[15] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed