Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110133-8    https://doi.org/10.11896/cldb.23110133
  金属与金属基复合材料 |
SiCp/Al超低温材料流动行为和本构模型构建
郭维诚1,*, 吴杰1, 郭淼现1, 孙启梦2
1 上海理工大学机械工程学院,上海 200093
2 内蒙动力机械研究所,呼和浩特 010010
Cryogenic Flow Behavior of SiCp/Al Composite and Construction of Constitutive Model
GUO Weicheng1,*, WU Jie1, GUO Miaoxian1, SUN Qimeng2
1 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Dynamic Machinery Institute of Inner Mongolia, Hohhot 010010, China
下载:  全 文 ( PDF ) ( 11788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硅颗粒增强铝基复合材料(SiCp/Al)由于优异的综合性能在航空航天领域应用广泛,而超低温处理已被证明在材料成形工艺中能进一步提升材料性能,面对愈加苛刻的工业要求,研究SiCp/Al在超低温下的流变特性显得尤为重要。本工作通过电子拉伸试验机对20% SiCp/Al进行了-196 ℃下准静态拉伸试验,并利用分离式霍普金森压杆装置进行了温度范围-196~20 ℃、应变率范围1 000~3 000 s-1的动态压缩试验。结果表明,SiCp/Al的应变率强化效应不显著,而超低温对材料的流动应力具有显著的强化效果。结合位错运动、应变硬化与动态再结晶软化分析了材料流动行为的变形机制。综合考虑应变、温度和应变率对材料流变特性影响的耦合效应对所建立的Johnson Cook本构模型进行修正,对比发现,修正Johnson Cook(MJC)模型能够较好地反映材料不同条件下的流动应力,预测误差降低了50%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭维诚
吴杰
郭淼现
孙启梦
关键词:  SiCp/Al  分离式霍普金森压杆  静动态力学性能  超低温  本构模型    
Abstract: Silicon carbide particle-reinforced aluminum matrix composites (SiCp/Al) are widely used in aerospace field due to the excellent comprehensive performance, and cryogenic treatmenthas been proved to be able to further enhance the material properties in the material forming process. In the face of highly demanding industrial requirements, the study of the rheological properties of SiCp/Al at cryogenic temperatures is particularly important. In this work, the quasi-static tensile test of 20% SiCp/Al at -196 ℃ was carried out with electronic tensile machine. Dynamic compression tests at the temperature range of -196—20 ℃ and the strain rate range of 1 000~3 000 s-1 were carried out with the split Hopkinson pressure bar. The results show that the strain rate strengthening effect of SiCp/Al is not significant, while cryogenic temperature has a great strengthening effect on the flow stress of the material. The deformation mechanism of the flow behavior is analyzed by combining the dislocation movement, strain hardening and dynamic recrystallization softening. The coupling effect of strain, temperature and strain rate on the rheological properties of the material is considered to modify the established Johnson Cook model. It is found that the modified Johnson Cook (MJC) model could properly reflect the flow stress under different conditions, and the prediction error is reduced by more than 50%.
Key words:  SiCp/Al    split Hopkinson pressure bar    static and dynamic mechanical property    cryogenic    constitutive model
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG115  
基金资助: 国家自然科学基金(52105470;52275452)
通讯作者:  *郭维诚,上海理工大学机械工程学院副教授、硕士研究生导师,2020年东华大学机械工程专业博士毕业。目前主要从事复合材料切削加工机理、金属固相沉积增材制造等方面的研究工作。wcguo@usst.edu.cn   
引用本文:    
郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
GUO Weicheng, WU Jie, GUO Miaoxian, SUN Qimeng. Cryogenic Flow Behavior of SiCp/Al Composite and Construction of Constitutive Model. Materials Reports, 2025, 39(4): 23110133-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110133  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110133
1 Dong C G, Wang R C, Peng C Q, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 3161 (in Chinese).
董翠鸽, 王日初, 彭超群, 等. 中国有色金属学报, 2021, 31(11), 3161.
2 Sadhu K K, Mandal N. Journal of Manufacturing Processes, 2023, 91, 10.
3 Cai J N, Le C, Fan Z M, et al. Diamond & Abrasives Engineering, 2023, 43(5), 546 (in Chinese).
蔡佳宁, 乐晨, 樊子民, 等. 金刚石与磨料磨具工程, 2023, 43(5), 546.
4 Lin L. Refined study on impact response and failure of reticulated shells. Ph. D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
林莉. 网壳结构冲击响应及失效机理精细化研究. 博士学位论文, 哈尔滨工业大学, 2015.
5 Tang B B, Wang H T, Jin P P, et al. Journal of Materials Research and Technology, 2020, 9(3), 6386.
6 Wu X P, Lyu Q L, Yang K, et al. Materials for Mechanical Engineering, 2021, 45(9), 83 (in Chinese).
邬小萍, 吕琴丽, 杨宽, 等. 机械工程材料, 2021, 45 (9), 83.
7 Rasool M S, Aripin M S M, Thamizhmanii S, et al. Advanced Materials Research, 2011, 383-390, 3320.
8 Hao S M, Xie J P, Wang A Q, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2468.
9 Tan Z H, Pang B J, Gai B Z, et al. Materials Letters, 2007, 61(23-24), 4606.
10 Sun W, Duan C Z, Yin W D, et al. Composite Structures, 2020, 236, 111856.
11 Zhang D N, Shangguan Q Q, Xie C J, et al. Journal of Alloys and Compounds, 2015, 619, 186.
12 Zhou L, Su X Y, Jing L, et al. Explosion and Shock Waves, 2022, 42(9), 113 (in Chinese).
周伦, 苏兴亚, 敬霖, 等. 爆炸与冲击, 2022, 42(9), 113.
13 Chen M H, Wang N. China Mechanical Engineering, 2020, 31(8), 997 (in Chinese).
陈明和, 王宁. 中国机械工程, 2020, 31(8), 997.
14 Huang K, Ying Y P, Huang S Q, et al. Materials Reports, 2022, 36(3), 168 (in Chinese).
黄珂, 易幼平, 黄始全, 等. 材料导报, 2022, 36(3), 168.
15 He J L, Chen F, Wang B, et al. Materials Science and Engineering: A, 2018, 715, 1.
16 Feng B, Gu B, Li S H. Materials Science and Engineering: A, 2022, 848, 143396.
17 Wang Y F, Xing J R, Zhou Y X, et al. Journal of Alloys and Compounds, 2023, 942, 169044.
18 Kumar R S V, Yadav G V, Shankar G U, et al. Materials Today: Proceedings, 2022, 62, 3450.
19 Tang B B, Wang H T, Jin P P, et al. Materials Research Express, 2020, 7(5), 56521.
20 Tian X H, Yan K C, Zhao J, et al. China Mechanical Engineering, 2022, 33(7), 872 (in Chinese).
田宪华, 闫奎呈, 赵军, 等. 中国机械工程, 2022, 33(7), 872.
21 Wang C Y, Xu J S, Li H, et al. The Chinese Journal of Nonferrous Metals, 2023, 33(1), 78 (in Chinese).
王晨宇, 许进升, 李辉, 等. 中国有色金属学报, 2023, 33(1), 78.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[3] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[6] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[7] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[8] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[9] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[10] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[11] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[12] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[13] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[14] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[15] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed