Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 25020039-14    https://doi.org/10.11896/cldb.25020039
  高分子与聚合物基复合材料 |
透明防污涂层技术在光伏领域的研究进展
杨迪聪1,3,4, 莫晓亮1,2,3,4,*, 褚君浩1,2,3,4
1 复旦大学光电研究院,上海 200438
2 复旦大学未来信息创新学院,上海 200438
3 光伏科学与技术全国重点实验室,上海 200438
4 上海市智能光电与感知前沿科学研究基地,上海 200438
Research Progress in Transparent Anti-Fouling Coating Technology and Its Applications in Photovoltaics
YANG Dicong1,3,4, MO Xiaoliang1,2,3,4,*, CHU Junhao1,2,3,4
1 Institute of Optoelectronics, Fudan University, Shanghai 200438, China
2 College of Future Information Technology, Fudan University, Shanghai 200438, China
3 State Key Laboratory of Photovoltaic Science and Technology, Shanghai 200438, China
4 Shanghai Intelligent Optoelectronics and Sensing Advanced Scientific Research Base, Shanghai 200438, China
下载:  全 文 ( PDF ) ( 51750KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能电池作为可再生能源广泛应用于陆地、沙漠、海洋等不同环境,但电池表面易受灰尘、油污、沙尘、微生物等侵蚀,导致电池光电转化效率降低。透明防污涂层兼具透明性和防污特性,可用于光伏器件及设备表面防污,提高其光电转化效率、延长使用寿命,克服目前人工清洗、机械清扫等除污技术维护成本高、易损伤电池等问题。但如何同时实现涂层透明性、防污性多功能性、提高涂层耐久性和稳定性等,仍是制约透明防污涂层发展及大规模应用的主要因素。文章综述了基于亲水-润湿表面特性、疏水-疏油表面特性、超滑特性、防污剂释放特性等透明防污涂层的构筑策略,以及具有辐射冷却、抗反射和柔性抗弯折等多功能透明防污涂层的构筑策略及构筑机理,并探讨了多功能透明防污涂层在太阳能电池及光学器件领域的应用、面临的挑战及未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨迪聪
莫晓亮
褚君浩
关键词:  透明防污涂层  功能性涂层  光伏  光学器件    
Abstract: Solar cells technologies, widely utilized as renewable energy sources in diverse environments such as terrestrial, desert, and marine settings, often suffer from reduced photoelectric conversion efficiency due to surface contamination such as dust, oil, and microorganisms. Benefiting from the integrated transparency and antifouling properties, transparent antifouling coatings can be applied to the surface of photovoltaic devices and equipment for antifouling purposes, thereby improving the photoelectric conversion efficiency of the devices and extending their service life. Relevant research can address the problems existing in current antifouling technologies such as manual cleaning and mechanical sweeping, including high maintenance costs and the risk of damaging batteries. However, achieving high transparency, multifunctionality, durability, and stability in these coatings remains a significant challenge. This paper reviews various strategies for constructing transparent anti-fouling coatings, including hydrophilic and wetting surfaces, hydrophobic and oleophobic surfaces, slippery surfaces, and anti-fouling agent release mechanisms. Additionally, it explores the development of multifunctional transparent coatings with features such as radiative cooling, anti-reflection, and flexible bending resistance, and in the end discusses their applications and challenges in solar cells and optical fields.
Key words:  transparent anti-fouling coating    functional coating    photovoltaics    optical device
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TQ638  
基金资助: 国家重点研发计划(2022YFA1200079);上海市产业协同创新项目(XTCX-KJ-2023-49);光伏科学与技术全国重点实验室基础课题(202301030303)
通讯作者:  *莫晓亮,博士,复旦大学未来信息创新学院,复旦大学光电研究院副教授。长期从事光电功能材料与器件、钙钛矿太阳能电池材料、薄膜材料、真空设备等的制备及研究工作。xlmo@fudan.edu.cn   
作者简介:  杨迪聪,硕士,工程师,在复旦大学光电研究院工作。主要从事新型太阳能电池材料、功能涂层材料、薄膜材料、生态材料的设计、制备及性能研究。
引用本文:    
杨迪聪, 莫晓亮, 褚君浩. 透明防污涂层技术在光伏领域的研究进展[J]. 材料导报, 2025, 39(24): 25020039-14.
YANG Dicong, MO Xiaoliang, CHU Junhao. Research Progress in Transparent Anti-Fouling Coating Technology and Its Applications in Photovoltaics. Materials Reports, 2025, 39(24): 25020039-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020039  或          https://www.mater-rep.com/CN/Y2025/V39/I24/25020039
1 Hosenuzzaman M, Rahim N A, Selvaraj J, et al. Renewable and Sustai-nable Energy Reviews, 2015, 41, 284.
2 Herwin S S, Monica C. Energies, 2022, 15, 6098.
3 Gu S, Lin R X, Han Q L, et al. Advance Materials, 2020, 32, 1907392.
4 Kim J Y, Lee J W, Jung H S, et al. Chemical Reviews, 2020, 120(15), 7867.
5 Zhao C, Wang J, Zhao X, et al. Nanoscale, 2021, 13, 2181.
6 Zhou Z J, Sun H H, Wang Q, et al. Materials Reports, 2023, 37(18), 24(in Chinese).
周子吉, 孙慧慧, 王群, 等. 材料导报, 2023, 37(18), 24.
7 Li Z, Klein T, Kim D, et al. Nature Reviews Materials, 2018, 3, 18017.
8 Aydin E, Allen T G, Bastiani M D, et al. Science, 2024, 383, eadh3849.
9 Isaifan R J, Johnson D, Ackermann L, et al. Solar Energy Materials and Solar Cells, 2019, 191, 13.
10 Kazem H A. Environmental Science and Pollution Research, 2023, 30, 119568.
11 Zaihidee F M, Mekhilef S, Seyedmahmoudian M, et al. Renewable and Sustainable Energy Reviews, 2016, 65, 1267.
12 Salamah T, Ramahi A, Alamara K, et al. Science of The Total Environment, 2022, 827, 154050.
13 Gong F X, Liu X W, Wang L. Hydropower and New Energy, 2015(5), 71(in Chinese).
龚芳馨, 刘晓伟, 王靓. 水电与新能源, 2015(5), 71.
14 Regmi G. Current Organic Chemistry, 2023, 27(22), 1385.
15 Maurya M R, Cabibihan J J, Sadasivuni K K, et al. Frontiers in Energy, 2022, 16, 548.
16 Wang J J, Wang L, Xie Z P. Paint & Coatings Industry, 2023, 53(9), 42(in Chinese).
王晶晶, 王璐, 谢志鹏. 涂料工业, 2023, 53(9), 42.
17 Wang C J, Liu S P, Wang Z H, et al. Materials Reports, 2022, 36(23), 195(in Chinese).
王池嘉, 刘书佩, 王子华, 等. 材料导报, 2022, 36(23), 195.
18 Deng Z P, Wu H M, Jiang W Z, et al. Journal of Sichuan University (Natural Science Edition), 2024, 61(5), 172(in Chinese).
邓泽鹏, 吴华猛, 蒋卫中, 等. 四川大学学报(自然科学版), 2024, 61(5), 172.
19 Dong W R, Li B C, Wei J F, et al. New Journey of Chemistry, 2022, 46, 6646.
20 Liu X Y, Xu L L, Zhao S S, et al. RSC Advances, 2023, 13, 23409.
21 Meng F, Wang W, Yu Y, et al. Journal of Coatings Technology and Research, 2023, 20, 2091.
22 Xu Y, Wu Q Y, Yang D C, et al. Sustainable Materials and Technologies, 2025, 43, e01278.
23 Laschewsky A, Rosenhahn A. Langmuir, 2019, 35(5), 1056.
24 Zhang H, Zheng J, Lin C, Yuan S. Molecules, 2022, 27(10), 3074.
25 Yu T, Wu J J, Shen Y, et al. Chemical Engineering Journal, 2024, 498, 155144.
26 Wang D H, Xu J K, Tan J Y, et al. Chemical Engineering Journal, 2021, 422, 130115.
27 Zhang J, Bo S, Feng H, et al. Coatings, 2021, 11(10), 1164.
28 Zhang J W, Bai X F, Chen R R, et al. Applied Surface Science, 2023, 641, 158532.
29 Zhang J W, Bai X F, Chen R R, et al. ACS Applied Materials & Interfaces, 2024, 16(44), 61249.
30 Feng L, Li S H, Li Y S, et al. Advanced Materials, 2002, 14(24), 1857.
31 Xu Y Z, He J X, Zhu W B, et al. Surface Technology, 2022, 51(10), 336(in Chinese).
徐亚洲, 何瑾馨, 朱卫彪, 等. 表面技术, 2022, 51(10), 336.
32 Liu P, Liu S Q, Yu X Q, et al. Chemical Engineering Journal, 2021, 406, 127153.
33 Gao J, Liu Y M, Zhong Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 694, 134121.
34 Zhu Q, Li B C, Li S B, et al. Journal of Colloid and Interface Science, 2020, 578, 262.
35 Tuteja A, et al. Science, 2007, 318, 1618.
36 Liu T L, Kim C J. Science, 2014, 346, 1096.
37 Rahmawan Y, Xu L B, Yang S. Journal of Materials Chemistry A, 2013, 1, 2955.
38 Chen H, Wang Z, Wang D, et al. Science China Technological Sciences, 2024, 67, 2031.
39 Li H J, Jin Q Q, Li H, et al. Advanced Functional Materials, 2024, 34, 2309684.
40 Shi T, Wang H N, Jia Q, et al. Materials Chemistry and Physics, 2023, 293, 126888.
41 AbuJarad N, Imran H, Imani S M, et al. Advanced Materials Technologies, 2022, 7, 2101702.
42 Zhu P, Zhu L J, Ge F F, et al. Surface and Coatings Technology, 2021, 426, 127793.
43 Ge D, Yang L, Zhang Y, Rahmawan Y, Yang S. Particle & Particle Systems Characterization, 2014, 31, 763.
44 European Chemicals Agency (ECHA). ECHA and five European countries issue progress update on PFAS restriction[EB/OL]. Helsinki:ECHA, Nov. 20, 2024 [2024-12-01]. https://echa.europa.eu/-/echa-and-five-european-countries-issue-progress-update-on-pfas-restriction.
45 Bers A V, Wahl M. Biofouling, 2004, 20(1), 43.
46 Liu Y B, Gu H M, Jia Y, et al. Chemical Engineering Journal, 2019, 356, 318.
47 Gangadoo S, Chandra S, Power A, et al. Journal of Materials Chemistry B, 2016, 4, 5747.
48 Liu Y H, Peng X Y, Liu X L. Chemical Journal of Chinese Universities, 2023, 44(8), 20230089.
49 Li J W, Lu B, Cheng Z B, et al. Progress in Organic Coatings, 2024, 191, 108460.
50 Tong Z, Song L, Chen S, et al. Advanced Functional Materials, 2022, 32, 2201290.
51 Wong T S, Kang S, Tang S, et al. Nature, 2011, 477, 443.
52 Tran G H, Nguyen Q B, Bui N N D, et al. Journal of Applied Polymer Science, 2024, 141(40), e56024.
53 Vogel N, Belisle R, Hatton B, et al. Nature Communications, 2013, 4, 2176.
54 Tenjimbayashi M, Park J Y, Muto J, et al. ACS Biomaterials Science & Engineering, 2018, 4(5), 1871.
55 Kasapgil E, Anac I, Erbil H Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 560, 223.
56 Zhang M L, Yu J, Chen R R, et al. Journal of Alloys and Compounds, 2019, 803, 51.
57 Kwon H Y, Jin J. Macromolecular Research, 2023, 31, 65.
58 Demirel G B, Caglar B N, Mutlutürk E, et al. Surface and Coatings Technology, 2024, 492, 131200.
59 Wei C Q, Zhang G F, Zhang Q H, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34810.
60 Ji J J, Liu N, Tian Y, et al. Chemical Engineering Journal, 2022, 445, 136716.
61 Lu N, Wu H M, Wang J L, et al. Journal of Sol-Gel Science and Technology, 2024, 110, 267.
62 Lin X, Li H T, Nie M X, et al. ACS Applied Materials & Interfaces, 2022, 14(34), 39432.
63 Zhang J W, Bai X F, Chen R R, et al. Progress in Organic Coatings, 2024, 196, 108679.
64 Rajagopalan N, Kiil S. Progress in Organic Coatings, 2024, 196, 108754.
65 Sun J W, Duan J Z, Liu C, et al. Chemical Engineering Journal, 2024, 490, 151567.
66 Preet S. Renewable and Sustainable Energy Reviews, 2018, 82(1), 791.
67 Sato D, Yamada N. Renewable and Sustainable Energy Reviews, 2019, 104, 151.
68 Zhang H Q, Cai Y Z, Liu L H, et al. Solar Energy Materials and Solar Cells, 2022, 245, 111859.
69 Yu S, Yu J, Chen Z, et al. ACS Photonics, 2024, 11(8), 3412.
70 Li Y, Chen X, Yu L, et al. ACS Applied Materials & Interfaces, 2023, 15(3), 4122.
71 Pour S S, Askarpour A N. Optical Materials, 2024, 147, 114751.
72 Feng K, Zhang L, Liu Y, et al. Chemical Engineering Journal, 2024, 488, 151176.
73 Liu E C, Sun M H, Wu M J, et al. Renewable Energy, 2024, 237(B), 121800.
74 Ye P, Peng J, Xu F, et al. Progress in Organic Coatings, 2023, 184, 107827.
75 Luo W, Xu J, Li G, et al. Langmuir, 2022, 38(23), 7129.
76 Lim S H, Ly N H, Lee J A, et al. Polymers, 2021, 13(19), 3333.
77 Lin E, Ye Z, Zheng L, et al. Thin Solid Films, 2024, 798, 140368.
78 Zhang J W, Bai X F, Chen R R, et al. Applied Surface Science, 2023, 641, 158532.
79 Wang X D, Zhao H Y, Su Y X, et al. ACS Applied Materials & Interfaces, 2019, 11(40), 37084.
80 Isakov K, Kauppinen C, Franssila S, et a1. ACS Applied Materials & Interfaces, 2020, 12(44), 49957.
81 Ai L, Zhang J, Li X, et al. ACS Applied Materials & Interfaces, 2018, 10(5), 4993.
82 Suzuki R. Journal of Sol-Gel Science and Technology, 2023, 106, 860.
83 Jin W J, Tan X Y, Dai Q H, et al. Materials Science in Semiconductor Processing, 2024, 184, 108847.
84 Fan C J, Zeng J Y, Yan X L, et al. Optical Materials, 2024, 157(1), 116022.
85 Choi G M, Jin J, Shin D, et al. Advanced Materials. 2017, 29, 1700205.
86 Chen R, Zhang Y, Xie Q, et al. Advanced Functional Materials, 2021, 31, 2011145.
87 Zhang Y, Chen Z, Zheng H, Chen R, Ma C, Zhang G. Advanced Science, 2022, 9, 2200268.
88 Li W, Wu G, Tan J H, et al. Macromolecular Materials and Engineering, 2019, 304(7), 1800765.
89 Huang Z H, Chen J Z, Li R, et al. Progress in Organic Coatings, 2023, 182, 107636.
90 Peng S J, Ouyang B S, Men Y Z, et al. Biomaterials, 2020, 231, 119680.
91 Dai G X, Xie Q Y, Ai X Q, et al. ACS Applied Materials & Interfaces, 2019, 11(44), 41750.
92 Guo W J, Li X, Xu F C, et al. ACS Applied Materials & Interfaces, 2018, 10(15), 13073.
93 Liang B, Zhong Z X, Jia E, et al. ACS Applied Materials & Interfaces, 2019, 11(33), 30300.
94 Yang H X, Jin K L, Wang H L, et al. Progress in Organic Coatings, 2022, 165, 106764.
95 Ha Z M, Lei L, Xia Y Z, et al. Progress in Organic Coatings, 2024, 197, 108813.
96 Sampaio P G V, González M O A. Renewable and Sustainable Energy Reviews, 2017, 74, 590.
97 Shi T, Wang H, Jia Q, et al. Materials Chemistry and Physics, 2023, 293, 126888.
98 Alamri H R, Rezk H, Abd-Elbary H, et al. Coatings, 2020, 10, 503.
99 Qin J, Lu H. Environmental Science and Pollution Research, 2023, 30, 91591.
100 Ziętkowska K, Przybyszewski B, Grzęda D, et al. Applied Sciences, 2023, 13(13), 7730.
101 Zheng W, Lin S, Ni Y, et al. Industrial & Engineering Chemistry Research, 2023, 62(43), 17701.
102 Du X, Jiang F, Liu E, et al. Journal of Aerosol Science, 2019, 130, 32.
103 Sarkın A S, Ekren N, Sağlam Ş. Solar Energy, 2020, 199, 63.
104 Wu Y, Du J, Liu G, Ma D, et al. Renewable Energy, 2022, 185, 1034.
105 Ziętkowska K, Przybyszewski B, Grzęda D, et al. Applied Sciences, 2023, 13(13), 7730.
106 Röhr J A, Lipton J, Kong J, et al. Joule, 2020, 4, 840.
107 Liu C B, Dong H, Zhang Z Y, et al. Solar Energy, 2022, 233, 489.
108 Li Q, Zheng Y, Guo X, et al. Advanced Functional Materials, 2023, 33, 2303729.
109 Vivar M, Sharon H, Fuentes M. Renewable and Sustainable Energy Reviews, 2024, 189(B), 114004.
110 Aritra G. Ocean Engineering, 2023, 281, 115044.
111 Röhr J A, Sartor B E, Lipton J, et al. Nature Photonics, 2023, 17, 747.
112 Gu Y J, Yang J H, Zhou S X. Journal of Materials Chemistry A, 2017, 5, 10866.
113 Fukuda K, Yu K, Someya T. Advanced Energy Materials, 2020, 10, 2000765.
114 Wu Z W, Li P, Zhang Y K, Zheng Z J. Small Methods, 2018, 2(1), 1800031.
115 Lin X, Li H T, Nie M X, et al. ACS Applied Materials & Interfaces, 2022, 14 (34), 39432.
116 Wang Y, Sun R, Zhao W, et al. Advanced Functional Materials, 2025, 35(15), 2418795.
117 Zhang J W, Wang W Q, Zhou S X, et al. Progress in Organic Coa-tings, 2019, 134, 312.
[1] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[2] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[3] 周子吉, 孙慧慧, 王群, 曹文, 周忠华, 黄悦. 可见光宽波带减反超疏玻璃的制备工艺及结构探讨[J]. 材料导报, 2023, 37(18): 22030191-7.
[4] 胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
[5] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[6] 孙宗宇, 吕杰, 阚志鹏, 段泰男, 陆仕荣. 基于苯并二噻吩的氟代小分子给体的合成、表征及光伏性能研究[J]. 材料导报, 2022, 36(14): 21020150-5.
[7] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[8] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[9] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[10] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[11] 林昇华, 张景, 艾玲, 鲁越晖, 王林军, 宋伟杰. 光伏玻璃减反射膜的研究进展[J]. 材料导报, 2019, 33(21): 3588-3595.
[12] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[13] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[14] 陈皓然, 夏英东, 陈永华, 黄维. 低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料[J]. 材料导报, 2018, 32(1): 1-11.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed