Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110162-7    https://doi.org/10.11896/cldb.24110162
  金属与金属基复合材料 |
振荡频率对TC4合金激光氮化组织形貌的影响及其数值模拟
罗健涵, 田晓东*, 王苗明月
长安大学材料科学与工程学院,西安 710064
Experimental and Numerical Study on the Effect of Oscillation Frequency on the Morphology and Microstructure of TC4 Alloy in Laser Nitriding
LUO Jianhan, TIAN Xiaodong*, WANGMIAO Mingyue
School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 34677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 圆形振荡扫描技术可以提高激光氮化层质量,但其熔池热力学仍有待研究。本文采用试验与数值模拟相结合的方法研究了振荡频率对氮化层组织形成的影响。实验结果表明,随着振荡频率的升高,无振荡激光氮化组织中的氮化区域缺失现象逐渐消失,而且氮化层中氮化物的分布也更加均匀。通过考虑传热的数值模型分析发现,圆形振荡激光会降低熔池的峰值温度和温度梯度,且随着振荡频率的升高,熔池温度场从半椭圆状转变为“W”状,使得温度场分布更加均匀,这促进了圆形振荡扫描激光氮化层的组织优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗健涵
田晓东
王苗明月
关键词:  激光氮化  TC4合金  圆形振荡扫描  温度场  显微组织    
Abstract: Circular oscillation scanning technology can enhance the quality of the nitriding layer, but the thermodynamics of the molten pool still require further investigation. In this work, a combination of experimental and numerical simulation methods was employed to explore the relationship between oscillation frequency and the formation of the nitriding layer microstructure. A numerical model that accounts for heat transfer was used to simulate the dynamic behavior of the molten pool temperature field and the thermal cycling process. The results show that circular oscillation laser reduces the peak temperature and temperature gradient in the molten pool. As the oscillation frequency increases, the temperature field distribution in the molten pool tends to form a "W" shape, leading to a more uniform temperature field distribution. Concurrently, with the increase of oscillation frequency, the distribution of nitrides also becomes more uniform. These indicate that oscillating laser technology improves the non-uniform nitriding and the lack of nitriding area in conventional non-oscillating laser nitriding by altering the temperature field distribution during the laser nitriding process.
Key words:  laser nitriding    TC4 alloy    circular osillating scanning    temperature field    microstructure
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TB31  
通讯作者:  *田晓东,长安大学材料科学与工程学院副教授、硕士研究生导师,目前主要从事材料表面改性和材料腐蚀与防护方面的研究。tianxd@chd.edu.cn   
作者简介:  罗健涵,长安大学材料科学与工程学院硕士研究生,研究方向为材料表面改性,主要研究课题为钛合金表面耐磨和抗氧化涂层技术。
引用本文:    
罗健涵, 田晓东, 王苗明月. 振荡频率对TC4合金激光氮化组织形貌的影响及其数值模拟[J]. 材料导报, 2025, 39(23): 24110162-7.
LUO Jianhan, TIAN Xiaodong, WANGMIAO Mingyue. Experimental and Numerical Study on the Effect of Oscillation Frequency on the Morphology and Microstructure of TC4 Alloy in Laser Nitriding. Materials Reports, 2025, 39(23): 24110162-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110162  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110162
1 Wang Y, Lu D, Wu G, et al. Surface and Coatings Technology, 2020, 393, 125815.
2 Zhao Z, Xu J, Fu Y, et al. Chinese Journal of Aeronautics, 2018, 31(1), 178.
3 Ju J, Zhao C, Kang M, et al. Tribology International, 2021, 159, 106996.
4 Selamat M S, Baker T N, Watson L M. Journal of Materials Processing Technology, 2001, 113(1), 509.
5 Han B, Fu Q X, Cao N, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(9), 2302(in Chinese).
韩彬, 付现桥, 曹宁, 等. 中国有色金属学报, 2014, 24(9), 2302.
6 Zhecheva A, Malinov S, Sha W. Surface and Coatings Technology, 2006, 201(6), 2467.
7 Kusmanov S A, Smirnov A A, Silkin S A, et al. Surface and Coatings Technology, 2016, 307, 1291.
8 Li W S, Zhang W B, Wu Y R, et al. The Chinese C Nonferrous Metals, 2020, 30(4), 817(in Chinese).
李文生, 张文斌, 武彦荣, 等. 中国有色金属学报, 2020, 30(4), 817.
9 Chen L, Mi G, Zhang X, et al. Journal of Materials Processing Technology, 2021, 298, 117314.
10 Choi K D, Ahn Y N, Kim C. Journal of Laser Application, 2010, 22, 116.
11 Chen X. , Wu G, Wang R, et al. Surface and Coatings Technology, 2007, 201(9), 4843.
12 Zong X, Wang H, Tang H, et al. Surface and Coatings Technology, 2023, 466, 129565.
13 Le Quang T, Faivre N, Vakili F F, et al. Journal of Cleaner Production, 2021, 313, 127796.
14 Wang Y, Yin Y, Wu G, et al. Optics & Laser Technology, 2022, 153, 108270.
15 Gu Y, Duan X, Xu Y, et al. Journal of Manufacturing Processes, 2024, 113, 346.
16 Sebestova h, Jambor M, Hornik P, et al. Thin-Walled Structures, 2024, 196, 111506.
17 Sorino C, Alberdi G, Lambarri J, et al. Surface and Coatings Technology, 2021, 409, 126877.
18 Cen L, Du W, Gong M, et al. Surface and Coatings Technology, 2022, 447, 128852.
19 Zagade P R, Gautham B P, De A, et al. Additive Manufacturing, 2024, 82, 104046.
20 Wang Z, Gao M. Journal of Manufacturing Processes, 2024, 119, 744.
21 Chen S, Wu Y, Li Y, et al. Optics & Laser Technology, 2020, 132, 106481.
22 Bu H, Zhan X, Yang H, et al. Journal of Manufacturing Processes, 2022, 79, 562.
23 Zhao J, Jiang P, Geng S, et al. Journal of Materials Research and Technology, 2022, 21, 267-282.
24 Yai P, Jiang X, Shao P, et al. Appl Applied Thermal Engineering, 2017, 113, 980.
25 Yao H S, Shi Y S, Zhang W X, et al. Applied Laser, 2007, 27(6), 456(in Chinese).
姚化山, 史玉升, 章文献, 等. 应用激光, 2007, 27(6), 456.
26 Tan S J, Li D S, Ye Y, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(11), 2296(in Chinese).
谭树杰, 李多生, 叶寅, 等. 中国有色金属学报, 2018, 28(11), 2296.
27 Lei Z, Chen Y, Zhou H, et al. Optics & Laser Technology, 2022, 145, 107496.
28 Jiang Z, Chen X, Li H, et al. Materials & Design, 2020, 186, 108195.
29 Gao F Q, Li W S, Wu Y R, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2832(in Chinese).
高凤琴, 李文生, 武彦荣, 等. 中国有色金属学报, 2020, 30(12), 2832.
30 Kamat A M, Copley S M, Todd J A. Acta Materialia, 2016, 107, 72.
[1] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[2] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[3] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[4] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[5] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[6] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[7] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[8] 宋春生, 徐龙, 李泓燊, 江友亮, 罗怡杭. 碳纤维复合材料固化过程的非均匀温度场重构技术研究[J]. 材料导报, 2025, 39(23): 24100070-8.
[9] 朱涛, 伍文星, 阳彤, 陈平虎, 郭亮亮, 金旭明, 邹新长, 邱长军. 氧与Co/TiAl协同作用对激光增材IN718合金组织与力学性能的影响[J]. 材料导报, 2025, 39(20): 24090003-7.
[10] 江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
[11] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[12] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[13] 赵锡龙, 曹泽宇, 赵铭, 王堃. 铜合金板材低电压螺柱喷涂304奥氏体不锈钢喷涂工艺及涂层性能研究[J]. 材料导报, 2025, 39(14): 24070070-7.
[14] 苏子龙, 尹立孟, 陈玉华, 张鹤鹤, 张龙, 张丽萍. 稀土元素对微电子封装互连材料组织与性能的影响[J]. 材料导报, 2025, 39(12): 24030246-9.
[15] 薛云龙, 田康康, 刘虎林, 伍媛婷, 袁亮, 高中堂. 无钴共晶高熵合金研究进展[J]. 材料导报, 2025, 39(11): 24050218-10.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed