Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100236-6    https://doi.org/10.11896/cldb.24100236
  金属与金属基复合材料 |
高强铝镁硅合金线电致热影响规律及机制研究
顾建*, 李冬青, 刘胜春, 司佳钧
国网电力工程研究院有限公司,北京 102401
Study on the Influence of Electrothermal Effect on High-strength Al-Mg-Si Alloy Wire
GU Jian*, LI Dongqing, LIU Shengchun, SI Jiajun
State Grid Electric Power Engineering Research Institute Company Limited, Beijing 102401, China
下载:  全 文 ( PDF ) ( 24120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以高强铝镁硅合金线为研究主体,通过实施传统的退火热处理与通电热处理两种工艺,系统探究了电致热处理对铝镁硅合金线性能和微观组织的影响。结果表明,原始态合金线经160 ℃退火处理后,抗拉强度显著降低,而导电率显著提升。与退火热处理相比,通电热处理态合金线的强度更低,导电率更高,两者间仍保持着强度与导电率相互制约的关系。热处理导致合金线内部径向晶粒长大、位错回复、析出相发生粗化,且通电热处理加速了析出相的粗化进程。径向晶粒尺寸的增大、位错密度的下降和析出相的粗化是热处理后合金线强度降低、导电率提升的关键因素。特别地,通电热处理过程中析出相附近产生的局部焦耳热,既是铝镁硅合金线的电致热损伤机制,也是导致其强度低于退火热处理态的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾建
李冬青
刘胜春
司佳钧
关键词:  铝镁硅合金线  热处理  强度  晶粒  析出相    
Abstract: Taking Al-Mg-Si alloy wire as the research subject, the influence of electrothermal treatment on the properties and microstructure of aluminum-magnesium-silicon alloy wire was systematically explored by implementing two processes:traditional annealing heat treatment and electrothermal treatment. The results show that the tensile strength of the as-drawn alloy wire decreases significantly after annealing at 160 ℃, while the electrical conductivity increases significantly. Compared with annealing heat treatment, the strength of the alloy wire in the electric-heated state is lower and the electrical conductivity is higher. The relationship between strength and electrical conductivity remains mutually trade-off. Heat treatment causes the growth of radial grain, recovery of dislocations and coarsening of precipitates of the Al-Mg-Si alloy wire. Furthermore, electric-heat treatment accelerates the coarsening process of the precipitates. The increase in radial grain size, decrease of dislocation density and coar-sening of precipitates are the key factors in the decrease in strength and the increase in electrical conductivity of the alloy wire after heat treatment. In particular, the local Joule heat generated near the precipitates during the electric-heat treatment process is not only the mechanism of electrothermal damage in the Al-Mg-Si alloy wire but also the main reason for its lower strength than that in the annealed-treated state.
Key words:  Al-Mg-Si alloy wire    heat treatment    strength    grain    precipitate
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG166.3  
基金资助: 国家电网公司科技项目(5500-202355715A-3-3-JC)
通讯作者:  *顾建,博士,国网电力工程研究院有限公司高级工程师,主要研究领域为输电线路新材料开发、评价及应用。gujian_epri@126.com   
引用本文:    
顾建, 李冬青, 刘胜春, 司佳钧. 高强铝镁硅合金线电致热影响规律及机制研究[J]. 材料导报, 2025, 39(23): 24100236-6.
GU Jian, LI Dongqing, LIU Shengchun, SI Jiajun. Study on the Influence of Electrothermal Effect on High-strength Al-Mg-Si Alloy Wire. Materials Reports, 2025, 39(23): 24100236-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100236  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100236
1 Jiang H X, Zheng Q J, Song Y, et al. Materials Characterization, 2022, 185, 111750.
2 Majchrowicz K, Pakieła Z, Chrominski W, et al. Materials Characterization, 2018, 135, 104.
3 Zhou W, Mo Y F, Su Z Q, et al. Light Alloy Fabrication Technology, 2020, 48(4), 42(in Chinese).
周伟, 莫宇飞, 苏智琦, 等. 轻合金加工技术, 2020, 48(4), 42.
4 Karabay S. Materials & Design, 2006, 27, 821.
5 Zhang F, Yu X, Zou D P, et al. Special Casting & Nonferrous Alloys, 2021, 41(8), 938(in Chinese).
张方, 于鑫, 邹大鹏, 等. 特种铸造及有色合金, 2021, 41(8), 938.
6 Smyrak B, Jurkiewicz B, Zasadzińska M, et al. Metals, 2020, 10(8), 1027.
7 Sauvage X, Bobruk E V, Murashkin M Y, et al. Acta Materialia, 2015, 98, 355.
8 Murashkin M Y, Sabirov I, Sauvage X, et al. Journal of Materials Science, 2015, 51, 33.
9 Jian X J, Zhang M S, Wang J S. Transactions of Materiais and Heat Treatment, 2019, 40(1), 83(in Chinese).
菅晓君, 张明山, 王俊升. 材料热处理学报, 2019, 40(1), 83.
10 Zheng H M, Hu X F, Cui J W, et al. Transactions of Materiais and Heat Treatment, 2017, 38(9), 43(in Chinese).
郑红梅, 胡学飞, 崔接武, 等. 材料热处理学报, 2017, 38(9), 43.
11 Yuan W H, Liang Z Y, Zhang C Y, et al. Materials & Design, 2012, 34, 788.
12 Huang J H, Wang X, Huang G F, et al. Physical Testing and Chemical Analysis (Part A:Physical Testing), 2014, 50(8), 558(in Chinese).
黄健华, 王煦, 黄国飞, 等. 理化检验-物理分册, 2014, 50(8), 558.
13 Xiao H, Xia X S, Huang S H, et al. Journal of Alloys and Compounds, 2022, 900, 163425.
14 Xu H, Liu M, Wang Y p, et al. Materialia, 2021, 20, 101245.
15 Xie S, Zhang J, Li R, et al. Materials Characterization, 2021, 181, 111434.
16 He L, Ning Q, Wei M, et al. Materials Science and Engineering:A, 2021, 801, 140112.
17 Liu X, Zhang X. Scripta Materialia, 2018, 153, 86.
18 Hall E O. Proceedings of the Physical Society. Section B, 1951, 64, 747.
19 Hou J P, Li R, Wang Q, et al. Journal of Alloys and Compounds, 2018, 769, 96.
20 Jiang S Y, Wang R H. Journal of Materials Science & Technology, 2019, 35(7), 1354.
21 Raeisinia B, Poole W J, Lloyd D J. Materials Science and Engineering:A, 2006, 420(1-2), 245.
22 Sunde J K, Lu F, Marioara C D, et al. Materials Science and Enginee-ring:A, 2021, 807, 140862.
23 Lu F, Sunde J K, Marioara C D, et al. Materials Science and Enginee-ring:A, 2022, 832, 142500.
24 Bailey J E, Hirsch P B. Philosophical Magazine, 1960, 5(53), 485.
25 Matthiessen A, Vogt C. Philosophical Transactions of the Royal Society of London, 1864, 154, 167.
26 Miyajima Y, Komatsu S Y, Mitsuhara M, et al. Philosophical Magazine, 2010, 90(34), 4475.
27 Wang Y, Zhu L J, Niu G D, et al. Advanced Engineering Materials, 2021, 23(5), 2001249.
28 Zhang X, Li H, Zhan M. Journal of Alloys and Compounds, 2018, 742, 480.
29 Kapoor R, Sunil S, Bharat Reddy G, et al. Scripta Materialia, 2018, 154, 16.
30 Zhang X, Li H, Zhan M. Journal of Alloys and Compounds, 2018, 742, 480.
[1] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[2] 郭幼丹, 程晓农. SAF2507双相不锈钢二次急冷淬火成形析出相的析出行为[J]. 材料导报, 2025, 39(9): 23100100-7.
[3] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[4] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 谭会杰, 王海燕, 华连庚, 高雪云, 吕萌, 于大威, 邢磊. 稀土Ce对Fe-Ni-Al马氏体时效钢等温过程显微组织演变的影响[J]. 材料导报, 2025, 39(7): 24010236-6.
[7] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[8] 梁志超, 任文渊, 李双村, 张爱军, 王毓国. 冻融和易溶盐对石灰固化伊犁黄土强度及水稳性的影响[J]. 材料导报, 2025, 39(6): 23120250-8.
[9] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[10] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[11] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[12] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[13] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[14] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[15] 霍海峰, 贾汶韬, 孙涛, 成鑫磊, 陈庆炜, 徐晖, 李涛. 压实雪抗压强度变化规律及烧结机制试验研究[J]. 材料导报, 2025, 39(23): 24120101-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed