Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100141-7    https://doi.org/10.11896/cldb.24100141
  无机非金属及其复合材料 |
不同pH值下制备烟酸根型水滑石的表征及氯离子吸附性能分析
林海孟, 温勇*, 郭晓琦, 孙晓燕, 田沛丰
新疆大学建筑工程学院,乌鲁木齐 830017
Characterisation of Nicotinic Acid Root-type Hydrotalcites Prepared at Different pH Values and Analysis of Their Chloride Ion Adsorption Properties
LIN Haimeng, WEN Yong*, GUO Xiaoqi, SUN Xiaoyan, TIAN Peifeng
School of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 10277KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以天然镁铝水滑石为源、烟酸为改性剂,采用焙烧水化重构法制备了三种烟酸根型水滑石(LDHs-VB3),分析了溶液pH值对产物的物相、官能团、微观形貌的影响,研究了产物LDHs-VB3(pH=9.3)、LDHs-VB3(pH=10.3)和LDHs-VB3(pH=11.3)的比表面积、孔径分布及氯离子(Cl-)吸附性能。结果表明,溶液pH值为11.3时,烟酸根离子(VB3-)未嵌入水滑石层间,而当溶液pH值为9.3、10.3时,VB3-明显嵌入水滑石层间。三者中,LDHs-VB3(pH=9.3)的层间距最大,其值为15.32 ,而LDHs-VB3(pH=10.3)的比表面积最大且结晶最好。它们的吸附过程均符合Langmuir等温线吸附模型,LDHs-VB3(pH=9.3)、LDHs-VB3(pH=10.3)和LDHs-VB3(pH=11.3)的最大Cl-吸附量分别为23.847 mg/g、39.128 mg/g和29.200 mg/g,前两者主要通过离子交换和表面吸附两种方式吸附Cl-,后者则主要以表面吸附方式为主。虽然它们的Cl-吸附量小于CLDHs,但是前两者拥有释放VB3-和吸附Cl-的双重作用且具有良好的热稳定性,具有作为钢筋混凝土中钢筋缓蚀剂的潜能,为后续LDHs型缓蚀剂的设计和绿色开发提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林海孟
温勇
郭晓琦
孙晓燕
田沛丰
关键词:  镁铝水滑石  烟酸  焙烧水化重构法  pH值  氯离子吸附性能    
Abstract: Three varieties of nicotinic acid root-typehydrotalcite (LDHs-VB3) were prepared by roasting hydration reconstruction method, employing natural magnesium-aluminium hydrotalcite as the source and nicotinic acid as the modifier. The effects of solution pH on the crystalline structure, functional groups and microscopic morphology of LDHs-VB3(pH=9.3), LDHs-VB3(pH=10.3) and LDHs-VB3(pH=11.3) were analyzed. Furthermore, the specific surface area, pore size distribution and chloride ion adsorption properties of these three LDHs-VB3 samples were investigated. The findings revealed that nicotinic acid anions (VB3-) are not successfully intercalated into the LDH interlayer at a pH of 11.3, whereas significant intercalation is achieved at pH values of 9.3 and 10.3. Among the three samples, LDHs-VB3(pH=9.3) exhibits the largest interlayer spacing, measuring 15.32 . In contrast, LDHs-VB3(pH=10.3) demonstrates the highest specific surface area and optimal crystallization. Besides, all the samples’ adsorption processes follow the Langmuir isothermal adsorption model, and the maximum chloride adsorption of LDHs-VB3(pH=9.3), LDHs-VB3(pH=10.3) and LDHs-VB3(pH=11.3) are 23.847 mg/g, 39.128 mg/g and 29.200 mg/g, respectively. In addition, LDHs-VB3(pH=9.3) and LDHs-VB3(pH=10.3) adsorb chloride ions mainly by both ion exchange and surface adsorption, while LDHs-VB3(pH=11.3) primarily relies on surface adsorption. Although the Cl- adsorption capacities of these three LDHs-VB3 samples are all lower than that of CLDHs, LDHs-VB3(pH=9.3) and LDHs-VB3(pH=10.3) possess the dual roles of releasing VB3- and adsorbing Cl- and exhibit good thermal stability, making them potential candidates as corrosion inhibitors for reinforcement bars in reinforced concrete. These findings provide a reference for the design and green development of the LDHs-type corrosion inhibitors.
Key words:  Mg-Al hydrotalcite    nicotinic acid    roasted hydrated reconstruction method    pH value    chloride ion adsorption property
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU502  
基金资助: 自治区厅厅联动重点研发计划项目绿色低碳建筑材料关键技术研究与应用(2022B03034-2);自治区“天山英才”科技创新领军人才(2023TSYCLJ0006);国家自然科学基金(52168036)
通讯作者:  *温勇,新疆大学建筑工程学院教授、博士研究生导师。主要从事混凝土材料耐久性、固体废弃物综合处置利用技术等研究。wenyong_9731@ 126.com   
作者简介:  林海孟,新疆大学建筑工程学院硕士研究生,在温勇教授的指导下进行研究。目前主要研究领域为金属腐蚀与防护等。
引用本文:    
林海孟, 温勇, 郭晓琦, 孙晓燕, 田沛丰. 不同pH值下制备烟酸根型水滑石的表征及氯离子吸附性能分析[J]. 材料导报, 2025, 39(23): 24100141-7.
LIN Haimeng, WEN Yong, GUO Xiaoqi, SUN Xiaoyan, TIAN Peifeng. Characterisation of Nicotinic Acid Root-type Hydrotalcites Prepared at Different pH Values and Analysis of Their Chloride Ion Adsorption Properties. Materials Reports, 2025, 39(23): 24100141-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100141  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100141
1 Apostolopoulos C A, Demis S, Papadakis V G. Construction and Building Materials, 2013, 38, 139.
2 Khan I, Francois R, Castel A. Cement and Concrete Research, 2014, 56, 84.
3 Liu G J, Zhang Y S, Liu C, et al. Materials Reports, 2021, 35(14), 14072(in Chinese).
刘国建, 刘云升, 刘诚, 等. 材料导报, 2021, 35(14), 14072.
4 Yang Z, Fischer H, Polder R. Cement & Concrete Composites, 2015, 58, 105.
5 Liao Q, Zhuang E, Li J, et al. Construction and Building Materials, 2024, 411, 134756.
6 Liu G J, Zhu H, Zhang Y S, et al. Journal and the Chinese Ceramic Society, 2022, 50(2), 413(in Chinese).
刘国建, 朱航, 张云升, 等. 硅酸盐学报, 2022, 50(2), 413.
7 Ann K Y, Song H. Corrosion Science, 2007, 49(11), 4113.
8 Wu M, Shi J. Corrosion Science, 2021, 183, 109326.
9 Etteyeb N, Novoa X R. Corrosion Science, 2016, 112, 471.
10 Aslam R, Mobin M, Zehra S, et al. Journal of Molecular Liquids, 2022, 364, 119992.
11 Cao Y, Zheng D, Dong S, et al. Journal of the Electrochemical Society, 2019, 166(11), C3106.
12 Mahmoud M R, Soliman M A, Rashad G M. Chemical Engineering Journal, 2017, 326, 781.
13 Yang Z, Fischer H, Cerezo J, et al. Construction and Building Materials, 2013, 47, 1436.
14 Cao Y, Zheng D, Luo J, et al. Journal of the Electrochemical Society, 2019, 166(16), C617.
15 Galvao T L P, Neves C S, Caetano A P F, et al. Journal of Colloid and Interface Science, 2016, 468, 86.
16 Tedim J, Poznyak S K, Kuznetsova A, et al. ACS Applied Materials & Interface, 2010, 2(5), 1528.
17 Zhuang E, Li J, Chen Z, et al. Composites Part B-Engineering, 2024, 277, 111414.
18 Yang H, Xiong C, Liu X, et al. Construction and Building Materials, 2021, 307, 124991.
19 Yang H, Xiong C, Liu X, et al. International Journal of Electrochemical Science, 2021, 16(3), 210362.
20 Yang H, Xiong C, Liu A, et al. Materials Letters, 2021, 300, 130228.
21 Chou M D, Niu M, Wang Y D, et al. Journal of Synthetic Crystals, 2016, 45(4), 1047(in Chinese).
仇满德, 牛苗, 王亦丹, 等. 人工晶体学报, 2016, 45(4), 1047.
22 Zhang W, Zeng H Y, Yang Y J, et al. Chinese Journal of Materials Research, 2012, 26(4), 437(in Chinese).
张伟, 曾虹燕, 杨永杰, 等. 材料研究学报, 2012, 26(4), 437.
23 Mei Y, Xu J, Jiang L, et al. Progress in Organic Coatings, 2019, 134, 288.
24 Kleyi P E, Mudaly P, Pillai S K, et al. Applied Clay Science, 2021, 215, 106304.
25 Aisawa S, Higashiyama N, Takahashi S, et al. Applied Clay Science, 2007, 35(3-4), 146.
26 Ma L, Qiang Y, Zhao W. Chemical Engineering Journal, 2021, 408, 127367.
27 Liu A, Tian H, Li W, et al. Applied Surface Science, 2018, 462, 175.
28 Yang J, Xu M, Li P, et al. Chemosphere, 2024, 351, 141207.
29 Yasaei M, Khakbiz M, Zamanian A, et al. Materials Science & Engineering C-Materials for Biological Applications, 2019, 103, 109816.
30 Gasser M S. Colloids and Surfaces B-Biointerfaces, 2009, 73(1), 103.
31 Gao X, Lei L, O’hare D, et al. Journal of Solid State Chemistry, 2013, 203, 174.
32 Moghanizadeh-Ashkezari M, Shokrollahi P, Zandi M, et al. ACS Applied Materials & Interface, 2019, 11(39), 35525.
33 Liu J Y, Wang Y, Sun C T, et al. Journal of Building Materials, 2024, 27(6), 503(in Chinese).
刘俊阳, 王艳, 孙丛涛, 等. 建筑材料学报, 2024, 27(6), 503.
34 Wu B. Preparation of inhibitor ions intercalation modified hydrotalcite and its application in cement mortar. Master’s Thesis, Shenzhen University, China, 2019(in Chinese).
吴波. 阻锈阴离子插层改性水滑石的制备及其在水泥砂浆中的应用. 硕士学位论文, 深圳大学, 2019.
35 Zhang J. Preparation of functionalized hydrotalcite adsorbent and study on adsorption behaviors and mechanism of uranium(Ⅵ). Master’s Thesis, Guangxi University, China, 2022(in Chinese).
张洁. 功能化水滑石的制备及其对铀(Ⅵ)的捕捉行为和机理研究. 硕士学位论文, 广西大学, 2022.
36 Chen C H, Tang Y C, Wu C N, et al. Fine Chemicals, 2024, 41(8), 1813(in Chinese).
陈彩虹, 唐玉朝, 伍昌年, 等. 精细化工, 2024, 41(8), 1813.
37 Wu K, Ye Q, Wang L, et al. Journal of CO2 Utilization, 2022, 60, 101982.
38 Liang Y. Study on modification of Mg-Al-LDH and its application in water treatment. Master’s Thesis, Taiyuan University of Technology, China, 2019(in Chinese).
梁颖. 镁铝水滑石的改性研究及其在水处理中的应用. 硕士学位论文, 太原理工大学, 2019.
39 Ji H, Wu W, Li F, et al. Journal of Hazardous Materials, 2017, 334, 212.
40 Wu B, Zuo J, Dong B, et al. Applied Clay Science, 2019, 180, 105181.
41 Djebbi M A, Bouaziz Z, Elabed A, et al. International Journal of Pharmaceutics, 2016, 506, 438.
42 Costa D G, Rocha A B, Souza W F, et al. Applied Clay Science, 2012, 56, 16.
43 Shi Y J, Li J, Wang C X, et al. Journal of Thermal Analysis and Calorimetry, 2008, 93(2), 403.
[1] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[2] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[3] 张铖, 王玲, 姚燕, 史鑫宇. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 21030009-4.
[4] 严蛟, 邝旻翾, 胡宏林, 孔磊, 马慧玲, 张秀芹. 间苯二酚-甲醛基酚醛/碳气凝胶微观结构调控研究进展[J]. 材料导报, 2022, 36(12): 20090342-10.
[5] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[6] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[7] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed