Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24070210-8    https://doi.org/10.11896/cldb.24070210
  金属与金属基复合材料 |
ICCP作用下桥梁破损拉吊索Cl-扩散行为研究
贺煊博1,2, 姚国文1,2,*, 周礼平2, 汤杨1,2, 赵玲2, 郭增伟2
1 重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆 400074
Study on Cl- Diffusion Behavior of the Bridge Broken Cable Under ICCP
HE Xuanbo1,2, YAO Guowen1,2,*, ZHOU Liping2, TANG Yang1,2, ZHAO Ling2, GUO Zengwei2
1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 25121KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 拉吊索作为梁体的主要传力结构,服役安全至关重要。针对实际工程中HDPE护套破损所导致的索内钢丝腐蚀损伤,对拉吊索进行缺陷加工并开展外加电流阴极保护(ICCP)实验,研究ICCP作用下Cl-的扩散行为与空间扩散模型。结果表明:ICCP能够有效抑制拉吊索的腐蚀进程,索内Cl-平均扩散系数显著减小,拉吊索腐蚀风险和腐蚀程度随破损发展呈增大趋势,随保护电位输出呈降低趋势。基于Fick定律建立同时考虑ICCP和初始破损的索内Cl-空间扩散模型,采用扩散阻断系数和破损影响系数对模型进行修正,模型显示ICCP对Cl-的扩散阻断效应显著,破损影响系数与破损尺寸呈正相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺煊博
姚国文
周礼平
汤杨
赵玲
郭增伟
关键词:  桥梁工程  拉吊索  外加电流阴极保护(ICCP)  腐蚀实验  Cl-扩散    
Abstract: As the main force transfer structure of the beam in bridge, the cable must has enough service safety. In view of the corrosion damage caused by HDPE sheath breakage in practical engineering, defect machining of the cable and the impressed current cathodic protection (ICCP) experiment was carried out to study the Cl- diffusion behavior and spatial diffusion model considering ICCP. The results show that ICCP can effectively inhibit the corrosion process of the cable, the average Cl- diffusion coefficient decreases significantly. The corrosion risk and corrosion degree of the cable increase with the development of breakage, and decrease with the output of protection potential. Based on Fick law, the Cl- spatial diffusion model considering both ICCP and initial breakage was established, and the diffusion blocking coefficient and breakage influence coefficient was used to revise the model. The model shows that the Cl- diffusion blocking effect of ICCP is significant, and the breakage influence coefficient is positively correlated with the breakage size.
Key words:  bridge engineering    cable    impressed current cathodic protection (ICCP)    corrosion experiment    Cl- diffusion
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  U444  
基金资助: 国家自然科学基金(52178273);重庆市自然科学基金创新发展联合基金(CSTB2023NSCQ-LZX0077);重庆市自然科学基金(cstc2021jcyj-msxmX1159);重庆英才计划“包干制”项目(cstc2022ycjh-bgzxm0124);重庆市研究生科研创新项目(CYB23244)
通讯作者:  *姚国文,博士,重庆交通大学土木工程学院教授、博士研究生导师。目前主要从事桥梁损伤机理与长期性能方面的研究。yaoguowen@sina.com   
作者简介:  贺煊博,重庆交通大学土木工程学院博士研究生,在姚国文教授的指导下进行研究。目前主要研究领域为桥梁缆索体系腐蚀疲劳损伤与长期性能。
引用本文:    
贺煊博, 姚国文, 周礼平, 汤杨, 赵玲, 郭增伟. ICCP作用下桥梁破损拉吊索Cl-扩散行为研究[J]. 材料导报, 2025, 39(22): 24070210-8.
HE Xuanbo, YAO Guowen, ZHOU Liping, TANG Yang, ZHAO Ling, GUO Zengwei. Study on Cl- Diffusion Behavior of the Bridge Broken Cable Under ICCP. Materials Reports, 2025, 39(22): 24070210-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070210  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24070210
1 Chen T. Bridge Construction, 2006(3), 12 (in Chinese).
陈涛. 桥梁建设, 2006(3), 12.
2 Li R, Zhao W Y. World Bridges, 2008(2), 69 (in Chinese).
李荣, 赵文艺. 世界桥梁, 2008(2), 69.
3 Wang R G. Highway, 2009(5), 11 (in Chinese).
王仁贵. 公路, 2009(5), 11.
4 Sun H Y. Journal of Highway and Transportation Research and Development, 2010, 27(S1), 141 (in Chinese).
孙虎元. 公路交通科技, 2010, 27(S1), 141.
5 Zhong D X. Modern Transportation Technology, 2013, 10(2), 60 (in Chinese).
钟东雄. 现代交通技术, 2013, 10(2), 60.
6 Yu X, Wang Y Q, Li W X, et al. In:Annual Meeting of Bridge and Structural Engineering Branch of China Study Association & National Bridge Academic Conference. Shenyang, China, 2013, pp.324 (in Chinese).
于欣, 王以泉, 李伟祥, 等. 中国公路学会桥梁和结构工程分会2013年年会暨全国桥梁学术会议. 沈阳, 2013, pp.324.
7 Bennett J, Turk A T, Firlotte C, et al. Materials Performance, 2012, 51(11), 31.
8 Christodoulou C, Kilgour R. Corrosion & Materials, 2014, 39(2), 36.
9 Christodoulou C, Sharifi A, Das S, et al. Bridge Engineering, 2014, 167(BE1), 43.
10 Christodoulou C, Cobbs R, Corbett P, et al. MATEC Web of Confe-rences, 2018, 199, 5002.
11 Dodds W, Christodoulou C, Goodier C I. MATEC Web of Conferences, 2018, 199, 5003.
12 Stone C, Donadio M, Christodoulou C, et al. MATEC Web of Confe-rences, 2019, 289, 3013.
13 Miao C Q, Wei T H, Wang Y C, et al. Journal of Southwest Jiaotong University, 2014, 49(3), 513 (in Chinese).
缪长青, 尉廷华, 王义春, 等. 西南交通大学学报, 2014, 49(3), 513.
14 Miao C Q, Li R, Yu J. Journal of Constructional Steel Research, 2020, 168, 105879.
15 Li R, Miao C Q, Feng Z X. Journal of Constructional Steel Research, 2021, 176, 106375.
16 Huang J, Lu W R, Yin C L, et al. Materials Reports, 2024, 38(S1), 228 (in Chinese).
黄晋, 卢微然, 殷成龙, 等. 材料导报, 2024, 38(S1), 228.
17 Zhang D, Wang Z Y. Chinese Journal of Materials Research, 2019, 33(8), 603 (in Chinese).
张丹, 王振尧. 材料研究学报, 2019, 33(8), 603.
18 Wang J, Qi Y, Zhao X, et al. Coatings, 2020, 10(5), 444.
19 Pang K, Hao W K, Wu J S, et al. Corrosion Science and Protection Technology, 2016, 28(3), 221 (in Chinese).
逄昆, 郝文魁, 吴俊升, 等. 腐蚀科学与防护技术, 2016, 28(3), 221.
20 Wang M N, Qiao C, Jiang X L, et al. Journal of Materials Science & Technology, 2020, 51, 40.
21 Li S L, Zhang L G, Wang Y, et al. Structure, 2021, 29, 1655.
22 Xiao Y, Gu J, Zhang J. Arabian Journal for Science and Engineering, 2017, 42(10), 4273.
23 Oni A. Construction and Building Materials, 1996, 10(6), 481.
24 Zhang G H, Gong M, Tang Q, et al. Corrosion & Protection, 2011, 32(11), 868 (in Chinese).
张国虎, 龚敏, 唐强, 等. 腐蚀与防护, 2011, 32(11), 868.
25 Cheng P Y. Research on impressed current cathodic protection method of bridge cable structure. Master's Thesis, Chongqing Jiaotong University, China, 2020 (in Chinese).
陈鹏宇. 桥梁索结构外加电流阴极保护方法研究. 硕士学位论文, 重庆交通大学, 2020.
26 Zucchi F, Grassi V, Monticelli C, et al. Corrosion Science, 2006, 48(2), 522.
27 Bahekar P V, Gadve S S. Construction and Building Materials, 2017, 156, 242.
28 Xie G H, Sun Y, Yan P, et al. Materials Reports, 2020, 34(22), 22178 (in Chinese).
谢桂华, 孙悦, 严鹏, 等. 材料导报, 2020, 34(22), 22178.
29 Ju X L, Wu L J, Liu M W, et al. Materials Reports, 2021, 35(24), 24075 (in Chinese).
鞠学莉, 吴林键, 刘明维, 等. 材料导报, 2021, 35(24), 24075.
30 Yang L F. Prediction of the remaining life of damaged cables and research on method of safety assessment. Master's Thesis, Chongqing Jiaotong University, China, 2016 (in Chinese).
杨凌飞. 损伤拉索剩余寿命预测模型与破损安全评价方法研究. 硕士学位论文, 重庆交通大学, 2015.
31 He X B, Yao G W, Long H, et al. Case Studies in Construction Materials, 2024, 20, 3227.
[1] 王宗山, 杨俊, 周建庭, 张洪. UHPC加固石拱桥试验与极限承载力计算[J]. 材料导报, 2025, 39(17): 24080230-7.
[2] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[3] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[4] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[5] 尚明刚, 何忠茂, 乔宏霞, 冯琼, 苏富赟, 张璐. 基于恒电流密度的钢筋混凝土加速腐蚀试验研究[J]. 材料导报, 2020, 34(22): 22058-22064.
[6] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[7] 杨世聪,姚国文,张劲泉,史康. 加速盐雾环境中钢绞线的腐蚀疲劳特征[J]. 《材料导报》期刊社, 2018, 32(12): 1988-1993.
[8] 邵旭东, 邱明红, 晏班夫, 罗军. 超高性能混凝土在国内外桥梁工程中的研究与应用进展*[J]. CLDB, 2017, 31(23): 33-43.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed