Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24070161-10    https://doi.org/10.11896/cldb.24070161
  高分子与聚合物基复合材料 |
基于纤维素纳米晶体的刺激响应水凝胶的研究进展
朱秋月1, 崔硕1, 徐涛1, 张正健1,2,3,*
1 天津科技大学轻工科学与工程学院,天津 300457
2 天津科技大学生物源纤维制造技术国家重点实验室,天津 300457
3 天津科技大学天津市制浆造纸重点实验室,天津 300457
Research Progress on Stimuli-responsive Hydrogels Based on Cellulose Nanocrystals
ZHU Qiuyue1, CUI Shuo1, XU Tao1, ZHANG Zhengjian1,2,3,*
1 College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
2 State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
3 Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
下载:  全 文 ( PDF ) ( 54834KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素纳米晶体(CNC)不仅具有高强度、高比表面积、易于表面修饰和生物相容性的特点,还能够自组装呈现结构色,在刺激响应水凝胶的设计和制造中起着重要作用。基于CNC的刺激响应水凝胶具有对外部环境刺激如温度、pH、机械外力、溶剂、离子强度等刺激的响应性,在环境检测、药物递送、信息加密、柔性传感器等领域有着巨大的应用潜力。本文首先介绍了基于CNC的刺激响应性水凝胶的制备方法;然后重点阐述了基于CNC的刺激响应性水凝胶的单重或多重刺激响应类型,以及在不同领域的应用研究进展;最后,总结了基于CNC的刺激响应性水凝胶研究面临的挑战并进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱秋月
崔硕
徐涛
张正健
关键词:  纤维素纳米晶体  水凝胶  刺激响应    
Abstract: Cellulose nanocrystals (CNC) not only possess characteristics such as high strength, high specific surface area, ease of surface modification, and biocompatibility, but also exhibit structural color through self-assembly. They play a significant role in the design and fabrication of stimuli-responsive hydrogels. CNC-based stimuli-responsive hydrogels exhibit responsiveness to external environmental stimuli such as temperature, pH, mechanical force, solvents, and ionic strength, holding immense potential in fields such as environmental monitoring, drug delivery, information encryption, and flexible sensors. This paper first introduces the preparation methods of CNC-based stimuli-responsive hydrogels. It then focuses on the single or multiple stimuli-responsive behaviors of CNC-based stimuli-responsive hydrogels and the research progress in their applications in various fields. It finally summarizes the challenges faced by CNC-based stimuli-responsive hydrogels in research and their application prospects.
Key words:  cellulose nanocrystal    hydrogel    stimuli-responsibility
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TQ352  
基金资助: 天津市教委科研计划(2018KJ096)
通讯作者:  *张正健,天津科技大学轻工科学与工程学院教授、博士研究生导师。目前主要从事功能性印刷包装材料方面的研究工作。zhangzj@tust.edu.cn   
作者简介:  朱秋月,现为天津科技大学轻工科学与工程学院硕士研究生,在张正健教授的指导下进行研究。目前主要研究领域为纤维素纳米晶体功能材料。
引用本文:    
朱秋月, 崔硕, 徐涛, 张正健. 基于纤维素纳米晶体的刺激响应水凝胶的研究进展[J]. 材料导报, 2025, 39(22): 24070161-10.
ZHU Qiuyue, CUI Shuo, XU Tao, ZHANG Zhengjian. Research Progress on Stimuli-responsive Hydrogels Based on Cellulose Nanocrystals. Materials Reports, 2025, 39(22): 24070161-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070161  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24070161
1 Koetting M C, Peters J T, Steichen S D, et al. Materials Science and Engineering R, 2015, 93, 1.
2 Deng Y, Xi J, Meng L, et al. European Polymer Journal, 2022, 180, 111591.
3 Zhang D, Ren B, Zhang Y, et al. Journal of Materials Chemistry B, 2020, 8(16), 3171.
4 Dreiss C A. Current Opinion in Colloid & Interface Science, 2020, 48, 1.
5 Mu R, Liu B, Chen X, et al. Environmental Technology & Innovation, 2020, 20, 101107.
6 Lv P, Lu X, Wang L, et al. Advanced Functional Materials, 2021, 31(45), 2104991.
7 De France K J, Hoare T, Cranston E D. Chemistry of Materials, 2017, 29(11), 4609.
8 Calvino C, Macke N, Kato R, et al. Progress in Polymer Science, 2020, 103, 101221.
9 Neumann M, di Marco G, Iudin D, et al. Macromolecules, 2023, 56(21), 8377.
10 Ding C X, Pan M Z. Journal of Materials Engineering, 2019, 47(1), 32. (in Chinese).
丁春香, 潘明珠. 材料工程, 2019, 47(1), 32.
11 Dogan-Guner E M, Schueneman G T, Shofner M L, et al. Cellulose, 2021, 28(17), 10875.
12 Song Z C, Xu Y X, Ma C C, et al. New Chemical Materials, 2024, 1006-3536, 1. (in Chinese).
宋智超, 徐一鑫, 马重重, 等. 化工新型材料, 2024, 1006-3536, 1.
13 He X, Lu Q. Carbohydrate Polymers, 2023, 301, 120351.
14 Ping X X, Xu H W, Dong H Q, et al. China Pulp & Paper, 2024, 43(7), 135. (in Chinese).
平欣鑫, 徐华炜, 董涵琦, 等. 中国造纸, 2024, 43(7), 135.
15 De France K J. The Canadian Journal of Chemical Engineering, 2024, 102(8), 2695.
16 Xu X J, Gao H, Zhu J L. Chinese Journal of Liquid Crystals and Displays, 2023, 38 (8), 997. (in Chinese).
许雪敬, 高涵, 朱吉亮. 液晶与显示, 2023, 38(8), 997.
17 Wang Y, Zheng X, Zhong W, et al. Polymer Chemistry, The Royal Society of Chemistry, 2022, 13(36), 5200.
18 Wang Q, Niu W, Feng S, et al. American Chemical Society Nano, 2023, 17(15), 14283.
19 Liu W, Si C L, Du H S, et al. Journal of Forestry Engineering, 2019, 4(5), 11. (in Chinese).
刘慰, 司传领, 杜海顺, 等. 林业工程学报, 2019, 4(5), 11.
20 Du Y, Feng G. Green Chemistry, The Royal Society of Chemistry, 2023, 25(21), 8349.
21 Dong F X. In:Proceedings of the 19th Annual Conference of China Paper Society [C]. China Paper Society, 2020, pp.7. (in Chinese).
董凤霞. 中国造纸学会第十九届学术年会论文集. 中国造纸学会, 2020, pp.7.
22 Zhang X, Qin M, Xu M, et al. European Polymer Journal, 2021, 146, 110268
23 Li B, Han Y, Zhang Y, et al. Cellulose, 2020, 27(17), 9913.
24 Atifi S, Su S, Hamad W Y. Nordic Pulp & Paper Research Journal, De Gruyter, 2014, 29(1), 95.
25 Wang J W, Shen H, Zhang S Y, et al. Shanghai Plastics, 2023, 51(6), 1. (in Chinese).
王军雯, 沈豪, 张诗禹, 等. 上海塑料, 2023, 51(6), 1.
26 Wang Z, Ding Y, Wang J. Nanomaterials, 2019, 9(10), 1397.
27 Xu Q, Ji Y, Sun Q, et al. Nanomaterials, 2019, 9(2), 253.
28 Boott C E, Tran A, Hamad W Y, et al. Angewandte Chemie International Edition, 2020, 59(1), 226.
29 Babaei-Ghazvini A, Acharya B. Chemical Engineering Journal, 2023, 476, 146585.
30 Tarhanlıİ, Senses E. Carbohydrate Polymers, 2023, 321, 121281.
31 Tang J, Javaid M U, Pan C, et al. Carbohydrate Polymers, 2020, 229, 115486.
32 Wu Y, Wang L, Qing Y, et al. Scientific Reports, 2017, 7(1), 4380.
33 Zhao D, Pang B, Zhu Y, et al. Advanced Materials, 2022, 34(10), 2107857.
34 Hiratani T, Kose O, Hamad W Y, et al. Materials Horizons, 2018, 5(6), 1076.
35 Jiang Y, Li G, Yang C, et al. Polymers, 2021, 13(8), 1219.
36 Nasseri R, Bouzari N, Huang J, et al. Nature Communications, 2023, 14(1), 6108.
37 Xiao G, Wang Y, Zhang H, et al. International Journal of Biological Macromolecules, 2021, 170, 272.
38 Sun W, Wang J, He M. Carbohydrate Polymers, 2023, 303, 120446.
39 Li X, Liu J, Zhang X. Advanced Functional Materials, 2023, 33(47), 2306208.
40 Emam H E, Shaheen T I. Carbohydrate Polymers, 2022, 278, 118925.
41 Duan C, Wang B, Li J, et al. Advanced Functional Materials, 2024, 34, 25.
42 Pei Z, Yu Z, Li M, et al. International Journal of Biological Macromolecules, 2021, 179, 324.
43 Li X, Yang Y, Valenzuela C, et al. Nano, 2023, 17(13), 12829.
44 Li P, Ling Z, Liu X, et al. Chemical Engineering Journal, 2023, 466, 143306.
45 Lee D, Park J, Hwang K, et al. Applied Nano Materials, 2024, 7(4), 3918.
46 Morozova S M, Korzhikova-Vlakh E G. Polymers, 2023, 15(24), 4689.
47 Lu T, Pan H, Ma J, et al. Applied Materials & Interfaces, 2017, 9(21), 18231.
48 Oechsle A L, Lewis L, Hamad W Y, et al. Chemistry of Materials, 2018, 30(2), 376.
49 Hu C, Bai L, Song F, et al. Carbohydrate Polymers, 2022, 296, 119929.
50 Sun W, Song Z, Wang J, et al. Carbohydrate Polymers, 2024, 332, 121946.
51 Cheng Q, Guo J, Cao X, et al. Chemical Engineering Journal, 2022, 439, 135670.
52 Chen G H, Cheng X Y, Zhai X, et al. Technology & Development of Chemical Industry, 2024, 53(4), 46. (in Chinese).
陈冠桦, 程欣瑶, 翟迅, 等. 化工技术与开发, 2024, 53(4), 46.
53 Shiraishi K, Takahashi S, Le K V, et al. Macromolecular Rapid Communications, 2020, 41(10), 1900631.
54 Cui Z Y, Li Y, Feng X, et al. Journal of Composites Science, 2024, 41(1), 240. (in Chinese).
崔琢玉, 李洋, 冯鑫, 等. 复合材料学报, 2024, 41(1), 240.
55 Yu M, Lin T, Yin X F, et al. Journal of Composites Science, 2024, 41(7), 3479. (in Chinese).
余梦, 林涛, 殷学风, 等. 复合材料学报, 2024, 41(7), 3479.
56 Yeung K K, Huang T, Hua Y, et al. Sensors Journal, 2021, 21(13), 14522.
[1] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[2] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[3] 张丽华, 李江, 王娟, 闫旭, 王俊丽, 白云峰, 冯锋. 刺激响应型基因递送系统在癌症治疗中的应用[J]. 材料导报, 2025, 39(9): 24050084-13.
[4] 董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
[5] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[6] 蒋力, 唐昭敏, 赵健清, 李世杰, 李昊宇, 杨怡宁, 潘皛, 王新茗. 原位可注射pH/温度双响应载药水凝胶的制备及抗肿瘤应用[J]. 材料导报, 2025, 39(6): 24010129-7.
[7] 王宛滢, 李宁, 宋子元. 刺激响应性聚氨基酸材料的设计与应用[J]. 材料导报, 2025, 39(5): 24080169-13.
[8] 谢梦恬, 马雨龙, 孙一榕, 孙海, 许维国, 王国良, 丁建勋. 生物活性水凝胶通过调控细胞行为促进皮肤慢性创面愈合[J]. 材料导报, 2025, 39(5): 24120195-14.
[9] 赵庭煜, 邵亮, 姬占有, 何寅坤, 王广静, 张涛. 高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用[J]. 材料导报, 2025, 39(4): 24010212-11.
[10] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[11] 张振豪, 赵晨曦, 朱飞宇, 唐欣, 盛洁, 杨方源. 高效保水与种子萌发:木质素海藻酸钠凝胶球的合成及其土壤改良作用[J]. 材料导报, 2025, 39(23): 24100194-8.
[12] 姚博星, 马钊, 杨宽, 邱林, 蔺子凡, 王书磊. 医疗用途导电水凝胶的研究进展[J]. 材料导报, 2025, 39(21): 25020012-11.
[13] 刘姝含, 丁晟, 侯可心, 程雅丽, 张绍辉, 李钒, 杨焜. 可注射止血水凝胶的设计原理及粘附能力增强策略[J]. 材料导报, 2025, 39(17): 24080189-12.
[14] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[15] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed