Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 25040221-5    https://doi.org/10.11896/cldb.25040221
  金属与金属基复合材料 |
高强钢熔敷金属中贝氏体板条形核机制及对力学性能的影响
刘景武*, 杜义, 孙磊, 王杏华, 付红亮, 张浩, 王任甫
中国船舶集团有限公司第七二五研究所,河南 洛阳 471000
Nucleation Mechanism of Bainite Laths in High-strength Melted Metal and Its Effect on Mechanical Properties
LIU Jingwu*, DU Yi, SUN Lei, WANG Xinghua, FU Hongliang, ZHANG Hao, WANG Renfu
Luoyang Ship Material Research Institute, Luoyang 471000, Henan, China
下载:  全 文 ( PDF ) ( 25338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 焊接是海工装备建造过程中重要的加工工艺,提高熔敷金属强韧性匹配是保障海工装备安全服役的关键因素。本工作制备了两种不同Cr含量的焊丝,通过熔化极活性气体保护焊进行焊接。组织形貌和晶体学特征的多尺度分析测试表明,不同熔敷金属组织均为板条贝氏体,当添加0.18%(质量分数)的Cr后,贝氏体相变点降低,转变速度加快,贝氏体板条形核方式由自催化形核转变为经典晶界形核,组织由交织状板条贝氏体转变为平行板条状贝氏体。力学性能测试表明,不同熔敷金属屈服强度均超过940 MPa,但是产生经典晶界形核的熔敷金属中大角度晶界密度低,对裂纹扩展的阻碍能力较差,在-50 ℃下的冲击吸收能量(45 J)明显低于产生自催化形核的熔敷金属(120 J)。通过合理调控高强度熔敷金属中的贝氏体板条形核方式,可以实现优异的强韧性匹配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘景武
杜义
孙磊
王杏华
付红亮
张浩
王任甫
关键词:  熔敷金属  板条贝氏体  形核机制  低温韧性    
Abstract: Welding constitutes a critical processing technology in the construction of offshore equipment, and enhancing the strength-toughness balance ofmelted metals is pivotal for ensuring the safe operation of such equipment. In this study, two types of welding wires with varying chromium contents were developed and utilized for metal active gas shielded arc welding. Microstructure and crystallographic characteristics of the melted metals were systematically analyzed using multi-scale techniques, and the findings revealed that the microstructure of the melted metals primarily comprises bainite lath. With the incorporation of 0.18wt% chromium, the transformation temperature of bainite decreased while its transformation rate increased. Furthermore, the nucleation mechanism of bainite laths transformed from autocatalytic nucleation to classical grain boundary nucleation, leading to a shift from interwoven bainite lath to parallel bainite lath microstructures. Mechanical property evaluations indicated that the yield strength of the melted metals exceeds 940 MPa. Notably, melted metals characterized by classical grain boundary nucleation exhibited reduced crack resistance due to fewer high-angle grain boundaries, resulting in significantly lower impact absorption energy (45 J at -50 ℃) compared to those featuring autocatalytic nucleation (120 J). It can be concluded that, by appropriately modulating the nucleation method of bainite laths, an optimal balance between strength and toughness can be achieved for high-strength melted metals.
Key words:  melted metal    bainite lath    nucleation mechanism    low-temperature toughness
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TG457.11  
基金资助: 国家重点研发计划(2022YFB4601902);中国船舶集团有限公司第七二五研究所青年基金项目(1023725093-3023012011)
通讯作者:  *刘景武,博士,主要研究领域为焊接冶金与工艺。jwliu725@126.com   
引用本文:    
刘景武, 杜义, 孙磊, 王杏华, 付红亮, 张浩, 王任甫. 高强钢熔敷金属中贝氏体板条形核机制及对力学性能的影响[J]. 材料导报, 2025, 39(21): 25040221-5.
LIU Jingwu, DU Yi, SUN Lei, WANG Xinghua, FU Hongliang, ZHANG Hao, WANG Renfu. Nucleation Mechanism of Bainite Laths in High-strength Melted Metal and Its Effect on Mechanical Properties. Materials Reports, 2025, 39(21): 25040221-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25040221  或          https://www.mater-rep.com/CN/Y2025/V39/I21/25040221
1 Yang Y L, Jia X, Zhu F X, et al. Materials Reports, 2022, 36(5), 20060056 (in Chinese).
杨宇龙, 贾潇, 朱伏先, 等. 材料导报, 2022, 36(5), 20060056.
2 Wang W, He L, He L. Development and Application of Materials, 2020, 35(6), 79 (in Chinese).
王伟, 何亮, 何磊. 材料开发与应用, 2020, 35(6), 79.
3 Zhang T L, Li Z X, Ma S M, et al. Science and Technology of Welding and Joining, 2016, 21(3), 186.
4 Li D H, Xu Y N, Xu H, et al. Welding & Joining, 2017(2), 44 (in Chinese).
李丹晖, 徐亦楠, 徐浩, 等. 焊接, 2017(2), 44.
5 An T B, Wei J S, Shan J G, et al. Acta Metallurgica Sinica, 2019, 55(5), 575 (in Chinese).
安同邦, 魏金山, 单际国, 等. 金属学报, 2019, 55(5), 575.
6 Feng W, Yu T X, Xu K, et al. Welding & Joining, 2023, (11), 6 (in Chinese).
冯伟, 于庭祥, 徐锴, 等. 焊接, 2023, (11), 6.
7 Xiao X M, Peng Y, Yang S, et al. Transactions of the China Welding Institution, 2014, 35(5), 26 (in Chinese).
肖晓明, 彭云, 杨帅, 等. 焊接学报, 2014, 35(5), 26.
8 Hossein B, Vahid T, Ilana B, et al. Acta Materialia, 2017, 127, 426.
9 Bhadeshia H, Keehan E, Karlsson L, et al. Transactions of the Indian Institute of Metals, 2006, 59(5), 689.
10 Cao Z L, Zhu H, An T B, et al. Transactions of the China Welding Institution, 2023, 44(7), 116 (in Chinese).
曹志龙, 朱浩, 安同邦, 等. 焊接学报, 2023, 44(7), 116.
11 Liu J W, Wei S T, Lu S P. Materials Science and Engineering A, 2022, 857, 144036.
12 Ravi A M, Sietsma J, Santofimia M J. Acta Materialia, 2016, 105(6), 155.
13 Nakanishi D, Kawabata T, Aihara S. Acta Materialia, 2018, 144, 768.
14 Mao G J, Cayron, C, Cao R, et al. Materials Characterization, 2018, 145, 516.
15 Zhou P, Zhou J Q, Ye Z X, et al. Materials Science and Engineering A, 2016, 663, 1.
[1] 付璐, 赵晏, 任帅, 孙智妍, 赵英利, 张中武. 横纵轧对低合金高强度钢夹杂物变形行为和低温韧性的影响[J]. 材料导报, 2024, 38(17): 23020218-6.
[2] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[3] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[4] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[5] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed