Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 136-140    https://doi.org/10.11896/j.issn.1005-023X.2017.018.027
  计算模拟 |
新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*
罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔
江苏大学材料科学与工程学院,镇江 212013
Dynamic Recrystallization Behavior of an Alumina-forming Austenitic Alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo
LUO Rui, CHENG Xiaonong, ZHENG Qi, ZHU Jingjing, WANG Jiao, LIU Tian, CHEN Guang, YANG Qiao
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 2413KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Gleeble-3500热力模拟试验机上对一种新型奥氏体耐热合金(Fe-20Cr-30Ni-0.6Nb-2Al-Mo)进行单道次热压缩实验,结合OM、EBSD及TEM等表征手段,研究了该合金在950~1 100 ℃和0.01~1 s-1热变形参数下的动态再结晶行为,采用回归法确定了合金的热变形激活能和表观应力指数,并以此构建其高温本构模型。实验结果表明,新型奥氏体耐热合金的应力水平随变形温度的升高而降低,随应变速率的增大而升高;动态再结晶行为更易发生在较高变形温度或较低应变速率下。采用lnθ-ε曲线的三次多项式拟合求解临界再结晶拐点的方法,较准确地预测了合金的动态再结晶临界点。此外,归纳出该合金在动态再结晶过程中的形核机制,主要包括应变诱导晶界迁移、晶粒碎化以及亚晶的合并。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗锐
程晓农
郑琦
朱晶晶
王皎
刘天
陈光
杨乔
关键词:  含铝奥氏体耐热合金  流变应力  本构方程  动态再结晶行为  形核机制    
Abstract: Isothermal compression tests at a temperature of 950—1 100 ℃ and strain rates ranging from 0.01 to 1 s-1 were performed on alumina-forming austenitic (AFA) alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo to reveal the hot deformation characteristics. The evolutions of microstructure and nucleation mechanisms of dynamic recrystallization (DRX) were analyzed combined with the technique of OM, EBSD and TEM. The regression method was adopted to determine the thermal deformation activation energy, apparent stress index, and to construct a thermal deformation constitutive model. The results show that the flow stress is strongly dependent on deformation temperature and strain rate, which increases with decreasing temperature and increasing strain rate. The DRX phenomenon occurred more easily at comparably higher deformation temperatures or lower strain rates. Based on the method for solving the inflection point via cubic polynomial fitting of lnθ-ε curves, the critical strain (εc) during DRX were precisely predicted. The nucleation mechanisms of DRX during thermal deformation mainly included the strain-induced grain boundary (GB) migration, grain fragmentation, and subgrain coalescence.
Key words:  alumina-forming austenitic alloy    flow stress    constitutive equation    dynamic recrystallization behavior    nucleation mechanism
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TG146.4  
基金资助: “十二五”国家高技术研究发展计划(863计划)重大资助项目(2012AA03A501);江苏省2014年度普通高校研究生科研创新计划项目(KYLY-1027)
作者简介:  罗锐:男,1988年生,博士,主要研究方向为高端金属结构材料的热加工性能 E-mail:luoruiweiyi@163.com
引用本文:    
罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
LUO Rui, CHENG Xiaonong, ZHENG Qi, ZHU Jingjing, WANG Jiao, LIU Tian, CHEN Guang, YANG Qiao. Dynamic Recrystallization Behavior of an Alumina-forming Austenitic Alloy Fe-20Cr-30Ni-0.6Nb-2Al-Mo. Materials Reports, 2017, 31(18): 136-140.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.027  或          https://www.mater-rep.com/CN/Y2017/V31/I18/136
1 Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: Part 1[J]. J Mater Eng Perform, 2001,10(1):81.
2 Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels[J]. Science, 2007,316:433.
3 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates[J]. Intermetallics, 2008,16:453.
4 Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water[J]. J Nucl Mater, 2010,399:231.
5 Bei H, Yamamoto Y, Brady M P, et al. Aging effects on the mechanical properties of alumina-forming austenitic stainless steels[J]. Mater Sci Eng A, 2010,527:2079.
6 Yamamoto Y, Muralidharan G, Brady M P. Development of L12-ordered Ni3(Al,Ti)-strengthened alumina-forming austenitic stainless steel alloys[J]. Scr Mater, 2013,69:816.
7 Zhou Haitao, Liu Zhichao, Wen Shengfa, et al. Dynamic recrystallization behavior of GH625 superalloy during hot deformation[J]. Rare Metal Mater Eng, 2012,41(11):1917(in Chinese).
周海涛,刘志超,温盛发,等. GH625合金的动态再结晶行为研究[J]. 稀有金属材料与工程, 2012,41(11):1917.
8 Wei Hailian, Liu Guoquan, Xiao Xiang, et al. Apparent and physically based constitutive analyses for hot deformation of austenite in 35Mn2 steel[J]. Acta Metall Sin, 2013,49(6):731 (in Chinese).
魏海莲,刘国权,肖翔,等. 表观的和基于物理的35Mn钢奥氏体热变形本构分析[J]. 金属学报, 2013,49(6):731.
9 Ebrahimi G R, Keshmiri H, Momeni A, et al. Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni[J]. Mater Sci Eng A, 2011,528: 488.
10Ryan N D, McQueen H J. Flow stress, dynamic restoration, strain hardening and ductility in hot wording of 316 steel[J]. J Mater Processing Technol, 1990,21(2):177.
11Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ Int, 2003,43(5):684.
12Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ Int, 2006,46(11):1679.
13Sellars C M, Mc Tegart W J. On the mechanism of hot deformation[J]. Acta Metall, 1966,14(9):1136.
14Slooff F A, Zhou J, Duszczyk J, et al. Constitutive analysis of wrought magnesium alloy Mg-Al4-Zn1[J]. Scr Mater, 2007,57:759.
15Lin Y C, Chen Mingsong, Zhong Jue. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J]. Comput Mater Sci, 2008,42:470.
16Cao Yu, Di Hongshuang, Zhang Jiecen, et al. Research on dynamic recrystallization behavior of incology 800H[J]. Acta Metall Sin, 2012,48(10):1175(in Chinese).
曹宇,邸洪双,张洁岑,等. 800H合金动态再结晶行为研究[J]. 金属学报, 2012,48(10):1175.
17Cao Yu, Di Hongshuang, Ma Tianjun, et al. Hot deformation behavior of alloy 800H[J]. J Northeastern University: Nat Sci Ed, 2012,33(2):213(in Chinese).
曹宇,邸洪双,马天军,等. 800H合金热变形行为研究[J], 东北大学学报:自然科学版, 2012,33(2):213.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[3] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[4] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[5] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[6] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[7] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[8] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[9] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[10] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[11] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[12] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[13] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[14] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[15] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed