Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100140-7    https://doi.org/10.11896/cldb.24100140
  无机非金属及其复合材料 |
粉煤灰混凝土氯离子扩散系数的广源大样本模型
杨绿峰1,2,*, 朱恩1,2
1 广西大学土木建筑工程学院,南宁 530004
2 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
Multisource Large-sample Model for Chloride Diffusion Coefficient of Fly Ash Concrete
YANG Lufeng1,2,*, ZHU En1,2
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 5486KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了克服现有的粉煤灰混凝土氯离子扩散系数模型不能反映水泥和粉煤灰等胶凝材料品质的影响、预测精度低的问题,基于广源大样本RCM试验数据,利用两相回归法建立了考虑水泥品类和粉煤灰等级影响的氯离子扩散系数高精度计算模型。首先,基于粉煤灰混凝土RCM试验的广源大样本数据,通过回归分析确定水胶比的线性函数和粉煤灰掺量的二次函数适合于建立氯离子扩散系数模型。其次,利用两相回归法确定水泥品类因子和粉煤灰品质因子对应于不同水泥品类、不同粉煤灰等级的取值,据此建立考虑粉煤灰等级、水泥类型及其强度等级影响的混凝土氯离子扩散系数预测模型。对比分析结果表明,广源大样本模型在一定程度上提升了粉煤灰混凝土氯离子扩散系数的预测精度和稳定性。但当不考虑胶凝材料品质影响时,模型预测精度和稳定性的提升效果有时不明显。本文模型通过引入水泥品类因子和粉煤灰品质因子考虑胶凝材料品质影响,能够进一步使加权平均误差降低41.7%、使变异系数降低34.3%,从而大幅提升氯离子扩散系数的预测精度和适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绿峰
朱恩
关键词:  粉煤灰混凝土  粉煤灰品质因子  水泥品类因子  氯离子扩散系数  快速电子迁移(RCM)  广源大样本    
Abstract: A multi-factor computational model of chloride diffusion coefficient of fly ash concrete was developed with high accuracy, incorporating the influence of quality of cement and fly ash by means of the two-phase regression technique on basis of the multisource large-sample RCM test data to overcome the drawbacks of the conventional chloride diffusion coefficient models for fly ash concrete. Firstly, the linear function of the water-binder ratio and the quadratic function of fly ash were chosen to be most suitable for the development of the chloride diffusion coefficient model through regression analysis of the multisource large-sample RCM test data. Furthermore, the cement type factor and the fly ash quality factor were presented with their values determined by means of the two-phase regression method, based on which the chloride diffusion coefficient model of concrete was developed incorporating the quality of cementitious material. It is validated by comparing with different models and test data that the multisource large-sample model improves the prediction accuracy and stability of the chloride diffusion coefficient of fly ash concrete to some extent. However the improvement is sometimes limited when the quality of cementitious material is not considered. The weighted average error and the coefficient of variation of the proposed multisource large-sample model can be further reduced by 41.7% and 34.3%, respectively, thus greatly improving the prediction accuracy and adaptability of the chloride diffusion coefficient by introducing cement category factor and fly ash quality factor.
Key words:  fly ash concrete    fly ash quality factor    cement type factor    chloride diffusion coefficient    rapid chloride migration (RCM)    multisource large-sample
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金重点项目(51738004);国家自然科学基金面上项目(51678165)
通讯作者:  *杨绿峰,广西大学土木建筑工程学院教授,工学博士,博士研究生导师。主要从事混凝土结构耐久性、工程结构承载力设计与优化以及结构可靠度与体系可靠度的研究。
作者简介:  朱恩,现为广西大学土木建筑工程学院博士研究生。目前主要研究领域为混凝土结构耐久性。
引用本文:    
杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
YANG Lufeng, ZHU En. Multisource Large-sample Model for Chloride Diffusion Coefficient of Fly Ash Concrete. Materials Reports, 2025, 39(21): 24100140-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100140  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100140
1 Yang L F, Long F B, Chen J, et al. Journal of Testing and Evaluation, 2023, 51(6), 4068.
2 Minstry of Transport of the People’s Republic of China. Standard for durability design of port and waterway engineering structure, JTS 153-2015. China Communications Press, China, 2015(in Chinese).
中华人民共和国交通运输部. 水运工程结构耐久性设计标准, JTS 153-2015. 人民交通出版社, 2015.
3 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of long-term performance and durability of concrete: GB/T 50082. China Architecture & Building Press, China, 2024 (in Chinese).
中华人民共和国住房和城乡建设部, 普通混凝土长期性能和耐久性性能试验方法标准: GB/T 50082. 中国建筑工业出版社, 2024.
4 NT Build 492, Concrete mortar and cement-based repair materials-Chloride migration coefficient from non-steady-state migration experiments. Nordtest Method, 1999.
5 Rong Z, Chen H, Gao Y, et al. Construction and Building Materials, 2024, 437, 137064.
6 Junior J R H, Balestra C E T. Construction and Building Materials, 2021, 277(10), 122265.
7 Sharbaf M, Najimi M, Ghafoori N. Construction and Building Materials, 2022, 346, 128330
8 Ming J, Zhang Y M, Sun W. Journal of the Chinese Ceramic Society, 2010, 38 (9), 1707.
9 Han X F, Zhao L X, Sun X G, et al. Journal of Advanced Concrete Technology, 2024, 22(3), 149.
10 Hong L, Wei H C, Wang M G. Journal of Building Materials, 2013 (1), 143(in Chinese).
洪雷, 危行财, 汪明刚. 建筑材料学报, 2013 (1), 143.
11 Riding K A, Thomas M D A, Folliard K J. ACI Materials Journal, 2013, 110(6), 705.
12 Baert G, Poppe A M, Belie N D. Structural Concrete, 2008, 9(2), 101.
13 Huang K S, Yang C C. Cement and Concrete Composites, 2022(130), 104558.
14 Su P, Dai Q, Kane E S. Construction and Building Materials, 2024, 414, 134928.
15 Jin W L, Xue W, Chen J. Journal of Building Structures, 2011, 32 (12), 86 (in Chinese).
金伟良, 薛文, 陈驹. 建筑结构学报, 2011, 32(12), 86.
16 Zhao J Q, Fan Z H, Xiong J B, et al. In: 4th international conference on civil, architecture and environment research. Zhuhai, China, 2021, pp. 6.
17 Wang J, Dong H. Journal of Building Engineering, 2023, 66, 105858.
18 State Administration for Market Regulation. Common portland cement: GB157-2023. Standards Press of China, China, 2023(in Chinese).
国家市场监督管理总局. 通用硅酸盐水泥: GB157-2023. 中国标准出版社, 2023.
19 State Administration for Market Regulation. Portland cement and ordinary portland cement: GB157-1999. Standards Press of China, China, 1999(in Chinese).
国家质量技术监督局. 硅酸盐水泥, 普通硅酸盐水泥: GB157-1999. 中国标准出版社, 1999.
20 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fly ash used for cement and concrete: GB/T 1596, Standards Press of China, 2017(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 用于水泥和混凝土中的粉煤灰: GB/T 1596, 中国标准出版社, 2017.
21 Gao X D, Wang X Y. Journal of Hydraulic Engineering, 1997(9), 38(in Chinese).
高相东, 王新友. 水利学报, 1997(9), 38.
22 Wu X L, Zhu B R. Journal of Building Materials, 1994, 7(4), 332 (in Chinese).
吴学礼, 朱蓓蓉. 建筑材料学报, 1994, 7(4), 332.
23 Yang L F, Zhou M, Chen Z, et al. Journal of Civil Engineering, 2016, 49 (12), 65 (in Chinese).
杨绿峰, 周明, 陈正, 等. 土木工程学报, 2016, 49(12), 65.
24 Yang L F, Zhu E, Wei Y C. Dryad, Dataset, https://datadryad.org/dataset/doi:10.5061/dryad.66t1g1k6j.
25 Yu B, Ma Q, Huang H C, et al. Construction and Building Materials, 2019, 215, 941.
26 Yang L F, Cai R, Yu B. Structural Concrete, 2018, 19(5), 1512.
27 Sakai Y. Construction and Building Materials, 2019, 229, 116868.
28 Yang Y, Wang M. Cement and Concrete Composites, 2018, 85, 92.
29 Moon H Y, Kim H S, Choi D S. Construction and Building Materials, 2006, 20(9), 725.
30 Liu J, Liu J Y, Fan X, et al. Journal of Building Engineering, 2022, 50, 104153.
31 Bouzoubaa N, Zhang M H, Malhotra V M. Cement and Concrete Research, 2001, 31(10), 1393.
32 Jain J A, Neithalath N. Cement and Concrete Composites, 2010, 32(2), 148.
33 Yang L F, Chen J W, Zhao J Q, et al. China Civil Engineering Journal, 2020, 53(12), 22(in Chinese).
杨绿峰, 陈俊武, 赵家琦, 等. 土木工程学报, 2020, 53(12), 22.
34 Marks M, Glinicki M A, Gibas K. Materials. 2015, 8(12), 8714.
[1] 杨玉龙, 单联飞, 庄智杰, 鲍玖文, 崔祎菲. 海洋潮汐区混凝土氯离子扩散系数相似性分析[J]. 材料导报, 2025, 39(18): 24080008-6.
[2] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[3] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[4] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed