Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100108-9    https://doi.org/10.11896/cldb.24100108
  金属与金属基复合材料 |
Ca、Sr复合添加对AZ91镁合金组织与耐腐蚀性能的影响
吴霜1, 胡平1, 刘文君1,*, 高雪琴1, 王维青1, 宋江凤2, 王辉3, 蒋斌2,*
1 重庆理工大学材料科学与工程学院,重庆 400054
2 重庆大学材料科学与工程学院,重庆 400044
3 西南技术工程研究所,重庆400039
Effect of Ca,Sr Composite Addition on Microstructure and Corrosion Resistance of AZ91 Magnesium Alloy
WU Shuang1, HU Ping1, LIU Wenjun1,*, GAO Xueqin1, WANG Weiqing1, SONG Jingfeng2, WANG Hui3, JIANG Bin2,*
1 School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
2 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 Southwest Technology and Engineering Research Institute, Chongqing 400039, China
下载:  全 文 ( PDF ) ( 38246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金因其轻量化特性和优良的力学性能,在壳体和支架类零部件上具有广泛的应用。然而,镁合金的电化学活性较大,且腐蚀产物膜疏松多孔,严重影响了零部件的服役性能。为此,本工作以典型商用镁合金AZ91为对象,研究Ca(0.1%,质量分数,下同)和不同含量Sr (0%、0.05%、0.15%、0.25%)复合添加后合金组织与耐腐蚀性的变化规律。结果表明:当0.1%Ca和0.15%Sr复合添加后,合金的组织最均匀细小,且耐腐蚀性能最好,其自腐蚀电位达到-1.484 V。随着Sr含量的增加,合金的蔷薇组织有所细化,同时组织中的Mg17Al12含量有所降低,而Al4Sr和Al2Ca相含量在0.25%Sr时显著增加。在高Sr含量中半连续的阴极相Mg17Al12逐渐被凝固界面前沿的Al4Sr和Al2Ca相阻断,并在相间产生了较多腐蚀通道,使得合金的耐蚀性能下降。适当的Sr(0.15%)在不明显改变Mg17Al12相分布连续的同时,生成了少量Al4Sr和Al2Ca阴极相,且明显细化了合金组织,使得腐蚀较为均匀和缓慢,从而提高了合金的耐蚀性能。此外,对Ca、Sr复合添加下的合金腐蚀机理进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴霜
胡平
刘文君
高雪琴
王维青
宋江凤
王辉
蒋斌
关键词:  Ca、Sr微合金化  AZ91  阴极相  腐蚀机理    
Abstract: Magnesium alloys have a wide range of applications in shell and bracket parts due to their lightweight properties and excellent mechanical properties. However, the electrochemical activity of magnesium alloys is relatively high, and the corrosion product film is porous and loose, which significantly influences the service performance of the components. In this study, AZ91 magnesium alloy was employed as the research object to examine the impact of combined additions of Ca (0.1%) and varying contents of Sr (0%, 0.05%, 0.15%, 0.25%) on the alloy microstructure and corrosion resistance. The results show that when 0.1Ca and 0.15Sr are combined, the alloy exhibits the most uniform and refined microstructure, and the optimal corrosion resistance with a self-corrosion potential of -1.484 V. As the Sr content increases, the rose-like microstructure of the alloy is refined, and the content of Mg17Al12 in the microstructure is observed to decrease. Conversely, the concentrations of the Al4Sr and Al2 Ca phases demonstrate a significant increase at 0.25% Sr. In the high Sr content, the semi-continuous cathodic phase Mg17Al12 is gradually blocked by the Al4Sr and Al2Ca phases at the solidification interface front, this results in the formation of additional corrosion channels between these phases, leading to a decrease in the corrosion resistance of the alloy. The addition of an appropriate Sr (0.15%) element gene-rates a minimal quantity of both Al4Sr and Al2 Ca cathodic phases, which do not markedly change the distribution of the Mg17Al12 phases, and significantly refines the alloy microstructure, resulting in more uniform and slower corrosion, thereby enhancing the corrosion resistance of the alloy. Furthermore, an in-depth analysis of the corrosion mechanism of the alloy with the combined addition of Ca and Sr was conducted.
Key words:  Ca,Sr microalloying    AZ91    cathodic phase    corrosion mechanism
发布日期:  2025-10-27
ZTFLH:  TG17  
基金资助: 国家重点研发计划(2021YFB3701000;2022YFB3709300);重庆市教委科学技术研究计划(KJQN202201136);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-DEX0011);重庆理工大学研究生创新项目(gzlcx20233006)和大学生创新创业训练计划项目(202311660002)
通讯作者:  *刘文君,博士,重庆理工大学材料科学与工程学院讲师、硕士生导师。目前主要从事镁合金铸造性能及工艺调控、合金化设计及其塑性成型,材料腐蚀与放电性能研究等方面的研究工作。wjliu@cqut.edu.cn
蒋斌,博士,重庆大学教授、博士研究生导师。目前主要从事镁合金新材料和先进制备加工技术的研究与应用。jiangbinrong@cqu.edu.cn   
作者简介:  吴霜,重庆理工大学材料与工程学院硕士研究生,在刘文君导师的指导下开展镁空气电池用阳极材料的腐蚀与放电行为研究。
引用本文:    
吴霜, 胡平, 刘文君, 高雪琴, 王维青, 宋江凤, 王辉, 蒋斌. Ca、Sr复合添加对AZ91镁合金组织与耐腐蚀性能的影响[J]. 材料导报, 2025, 39(20): 24100108-9.
WU Shuang, HU Ping, LIU Wenjun, GAO Xueqin, WANG Weiqing, SONG Jingfeng, WANG Hui, JIANG Bin. Effect of Ca,Sr Composite Addition on Microstructure and Corrosion Resistance of AZ91 Magnesium Alloy. Materials Reports, 2025, 39(20): 24100108-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100108  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100108
1 He H T, Wang C, Li J H, et al. Plating and Finishing, 2023, 45(5), 41 (in Chinese).
和豪涛, 王晨, 李金辉, 等. 电镀与精饰, 2023, 45(5), 41.
2 Niu J X, Xu N X, Zhang C D, et al. Corrosion & Protection, 2008(1), 1 (in Chinese).
钮洁欣, 徐乃欣, 张承典, 等. 腐蚀与防护, 2008(1), 1.
3 Adsul S H, Raju K R C S, Sarada B V, et al. Journal of Magnesium and Alloys, 2018, 6(3), 299.
4 Liu Z Q. Galvanic corrosion mechanism of magnesium alloy. Master’s Thesis, Wuhan Institute of Technology, China, 2022 (in Chinese).
刘泽琪. 镁合金的电偶腐蚀机理研究. 硕士学位论文, 武汉工程大学, 2022.
5 Kim Y M, Yim C D, Kim H S, et al. Scripta Materialia, 2011, 65(11), 958.
6 Balart M J, Patel J B, Fan Z Y. Metals, 2016, 6(6), 131.
7 Yang Y, Kushima A, Han W Z, et al. Nano letters, 2018, 18(4), 2492.
8 Sun L, Cui X M, Bai P C, et al. Powder Metallurgy Industry, 2022, 32(2), 77 (in Chinese).
孙丽, 崔晓明, 白朴存, 等. 粉末冶金工业, 2022, 32(2), 77.
9 Yang Q, Liu Y P, Xu R G, et al. Special Casting & Nonferrous Alloys, 2022, 42(9), 1170 (in Chinese).
杨清, 刘燕平, 许瑞高, 等. 特种铸造及有色合金, 2022, 42(9), 1170.
10 Zhang N, Cheng R J, Dong H W, et al. Materials Reports, 2019, 33(15), 2565 (in Chinese).
张娜, 程仁菊, 董含武, 等. 材料导报, 2019, 33(15), 2565.
11 Ruan S H, Wu Z G, Chen J Y, et al. Special Casting & Nonferrous Alloys, 2023, 43(9), 1175 (in Chinese).
阮世会, 吴宗钢, 陈洁仪, 等. 特种铸造及有色合金, 2023, 43(9), 1175.
12 Wang W X, Liu X Y, Wang N, et al. Corrosion & Protection, 2020, 41(11), 27 (in Chinese).
王武孝, 刘雪雍, 王娜, 等. 腐蚀与防护, 2020, 41(11), 27.
13 Chen Y, Zou D N, Tong L B, et al. Transactions of Materials and Heat Treatment, 2020, 41(3), 40 (in Chinese).
陈阳, 邹德宁, 佟立波, 等. 材料热处理学报, 2020, 41(3), 40.
14 Zhu Y C, Rong S F, Yin D S, et al. Foundry Equipment and Technology, 2011, 33(1), 20 (in Chinese).
朱永长, 荣守范, 尹冬松, 等. 铸造设备与工艺, 2011, 33(1), 20.
15 Xiang H C, Liu W J, Wang Q, et al. Materials, 2023, 16, 3886.
16 Zhang C, Wu L, Huang G S, et al. Journal of Alloys and Compounds, 2020, 823, 153844.
17 Majhi J, Ganguly S, Basu A, et al. Journal of Alloys and Compounds, 2021, 873, 159600.
18 Deng M, Wang L Q, Höche D, et al. Materials Horizons, 2021, 8(2), 589.
19 Qin J L, Chang L L, Su X J. Journal of Magnesium and Alloys, 2024, 12(9), 3744.
20 Kim W C, Nam N D, Kim J G, et al. Electrochemical and Solid-State Letters, 2011, 14(11), C21.
21 Deng R Q, Fu X L, Kong X B, et al. Hot Working Technology, 2021, 50(16), 8 (in Chinese).
邓日求, 付小玲, 孔祥斌, 等. 热加工工艺, 2021, 50(16), 8.
22 Atrens A, Song G L, Cao F Y, et al. Journal of Magnesium and Alloys, 2013, 1(3), 177.
23 Cao F Y, Shi Z M, Hofstetter J, et al. Corrosion Science, 2013, 75, 78.
24 Atrens A, Liu M, Abidin N I Z. Materials Science and Engineering, 2011, 176(20), 1609.
25 Abidin N I Z, Rolfe B, Owen H, et al. Corrosion Science, 2013, 75, 354.
26 Janz A, Gröbner J, Mirković D, et al. Intermetallics, 2007, 15(4), 506.
27 Yang Y. Foundry Technology, 2023, 44(5), 419 (in Chinese).
杨洋. 铸造技术, 2023, 44(5), 419.
28 Feng H, Liu S H, Du Y, et al. Journal of Alloys and Compounds, 2017, 695, 2330.
29 Wang L, Shinohara T, Zhang B P. Applied Surface Science, 2010, 256(20), 5807.
30 Liu Q, Chen G Q, Zeng S B, et al. Journal of Tsinghua University (Science and Technology), 2019, 59(9), 765 (in Chinese).
刘瞿, 陈高强, 曾申波, 等. 清华大学学报 (自然科学版), 2019, 59(9), 765.
31 Jiang B, Xiang Q, Atrens A, et al. Corrosion Science, 2017, 126, 374.
32 Abidin N I Z, Martin D, Atrens A. Corrosion Science, 2011, 53(3), 862.
33 Shi Z M, Liu M, Atrens A. Corrosion Science, 2010, 52(2), 579.
34 Song G, Atrens A. Advanced Engineering Materials, 2003, 5(12), 837.
35 Wang H Y, Liu S F. China Foundry Machinery & Technology, 2007, 42(4), 7 (in Chinese).
王慧源, 刘生发. 中国铸造装备与技术, 2007, 42(4), 7.
36 Fan X M, Ma B, Liu C H. Material & Heat Treatment, 2012, 41(4), 80 (in Chinese).
范晓明, 马斌, 刘晨辉. 热加工工艺, 2012, 41(4), 80.
37 Yang J, Peng J, Nyberg E A, et al. Applied Surface Science, 2016, 369, 92.
[1] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[2] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[3] 周飞龙, 唐鑫, 郭磊, 廖柯熹, 冷吉辉. L245NS钢在不同O2含量的CO2/H2S/O2体系中的腐蚀行为探究[J]. 材料导报, 2025, 39(18): 24070131-7.
[4] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[5] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[6] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[7] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[8] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[9] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[10] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[11] 徐金勇, 吴庆丹, 魏新龙, 肖金坤, 张超. 电弧喷涂耐海水腐蚀金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13155-13159.
[12] 曹琛, 郑山锁, 胡卫兵, 张晓辉, 刘毅. 大气环境腐蚀下钢结构力学性能研究综述[J]. 材料导报, 2020, 34(11): 11162-11170.
[13] 曹琛, 郑山锁, 胡卫兵. 酸雨环境下混凝土结构性能研究综述[J]. 材料导报, 2019, 33(11): 1869-1874.
[14] 高礼雄,丁汝茜,姚燕,荣辉,王海良,张磊. 混凝土的微生物腐蚀:机理、影响因素、评价指标及防护技术[J]. 《材料导报》期刊社, 2018, 32(3): 503-509.
[15] 袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed