Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23110256-4    https://doi.org/10.11896/cldb.23110256
  无机非金属及其复合材料 |
钆掺杂的高非线性和低漏流SnO2基压敏电阻材料
孙斐1, 赵洪峰1,*, 缪奎2
1 新疆大学电气工程学院,电力系统及大型发电设备安全控制和仿真国家重点实验室风光储分室,乌鲁木齐 830046
2 西安西电避雷器有限公司,西安710200
Gadolinium-doped SnO2-based Varistor Materials with High Nonlinear Coefficient and Low Leakage Current
SUN Fei1, ZHAO Hongfeng1,*, MIAO Kui2
1 The Wind Solar Storage Division of State Key Laboratory of Control and Simulation of Power System and Generation Equipment, School of Electrical Enginee-ring, Xinjiang University, Urumqi 830046, China
2 Xidian Surge Arrester Co., Ltd., Xi'an 710200, China
下载:  全 文 ( PDF ) ( 3771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过在SnO2-Co3O4-Cr2O3-Ta2O5体系中引入Gd,制备了兼具高非线性系数和低泄漏电流的SnO2压敏陶瓷材料。结果表明:Gd的掺杂能够促进晶粒生长,降低样品气孔率,并在掺杂量为0.25%(如无特殊说明均为摩尔分数)时获得了最佳的电气性能,非线性系数达到55,泄漏电流低至7.74 mA/cm2,同时电压梯度高达568 V/mm,在50 Hz频率下介电常数高达213,显示出其潜在的应用前景。但过饱和的掺杂会恶化压敏陶瓷的电气性能。本工作将非线性系数的变化归因于晶界势垒的提升,认为泄漏电流减小是晶界电阻升高,电子迁移率下降导致的,并从点缺陷的角度分析了晶界势垒升高的原因,系统地阐述了Gd的掺杂对SnO2压敏电阻陶瓷电气性能和微观结构的影响机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙斐
赵洪峰
缪奎
关键词:  SnO2压敏电阻  非线性  泄漏电流  晶界电阻  势垒  点缺陷    
Abstract: By introducing Gd into the SnO2-Co3O4-Cr2O3-Ta2O5 system, this work prepared a SnO2 varistor ceramic material with a high nonlinear coefficient and low leakage current. The results show that the doping of Gd can promote grain growth, reduce the porosity of the sample, and obtain the best electrical performance when the doping amount is 0.25mol%, with a nonlinear coefficient reaching 55 and a leakage current as low as 7.74 mA/cm2. At the same time, the voltage gradient is also as high as 568 V/mm, and the dielectric constant is as high as 213 at a frequency of 50 Hz, showing its potential application prospects. However, oversaturated doping will deteriorate the electrical properties of varistor ceramics. We attribute the change in the nonlinear coefficient to the improvement of the grain boundary barrier. The decrease in leakage current is caused by the increase in grain boundary resistance and the decrease in electron mobility. The reason for the increase in grain boundary barrier was analyzed from the perspective of point defects, and the influence mechanism of Gd doping on the electrical properties and microstructure of SnO2 varistor ceramics was systematically explained.
Key words:  SnO2 varistor    nonlinear coefficient    leakage current    barrier    point defects
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TM283  
基金资助: 新疆维吾尔自治区自然科学基金(2022D01C21)
通讯作者:  *赵洪峰,博士,教授,博士研究生导师。从事高电压与绝缘技术的教学与研究工作,长期开展绝缘材料的性能调控研究,在导电陶瓷材料的研发方面取得了长足的进展。zhf_zhf@126.com   
作者简介:  孙斐,新疆大学电气工程学院硕士研究生,主要研究方向为避雷器压敏陶瓷材料。
引用本文:    
孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
SUN Fei, ZHAO Hongfeng, MIAO Kui. Gadolinium-doped SnO2-based Varistor Materials with High Nonlinear Coefficient and Low Leakage Current. Materials Reports, 2025, 39(2): 23110256-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110256  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23110256
1 Meng P F, Hu J, Zhao H F, et al. Ceramics International, 2016, 42(16), 13692.
2 Zhao H F, He J L, Hu J, et al.Materials Letters, 2016, 164, 80.
3 Ivon A I, Lavrov R I, Glot A B.Ceramics International, 2013, 39, 6441.
4 Hu G L, Zhu J F, Yang H B, et al.Journal of Materials Science: Mate-rials in Electronics, 2014, 25, 997.
5 Miranda-L'opez M I, Mariño-G'amez A E, Hern'andez M B.Ceramics International, 2021, 47, 3.
6 Gomez-Rodriguez C, Aguilar-Martinez J, Garcia-Villareal A, et al. Journal of Alloys and Compounds, 2017, 699, 738.
7 Cio'rcero J R, Pianaro S A, Bacci G, et al.Journal of Materials Science: Materials in Electronics, 2011, 22, 679.
8 Zang G Z, Wang J F, Chen H C, et al.Key Engineering Materials, 2005, 280, 271.
9 Liang W X, Zhao H F, Meng X J, et al.Materials Letters, 2021, 285(3), 129120.
10 Sun G Y, Wang F D, Zhao Y. Materials Chemistry and Physics, 2023, 305, 127967.
11 Fan S H, Zhao H F, Liang W X. Materials Science in Semiconductor Processing, 2021, 121(1), 125.
12 Liu D J, Ma Y Y, He J B, et al. Acta Physica Sinica, 2023, 72(6), 9 (in Chinese).
刘冬季, 马圆圆, 何金柏, 等. 物理学报, 2023, 72(6), 9.
13 Zhang Z J. Physical chemistry of materials, Chemical Industry Press, China, 2006, pp.175 (in Chinese).
张志杰.材料物理化学, 化学工业出版社, 2006, pp.175.
14 Sara T, Aleksander R, Slavko B, et al.Journal of the European Ceramic Society, 2020, 40(15), 5518.
15 Jiang M Q, Hu W B, Jacob L, et al.ACS Applied Materials & Interfaces, 2021, 45, 13.
16 Tian T, Li G R, Bernik S, et al.Materials Science in Semiconductor Processing, 2023, 163, 107570.
17 Chen K, Zhao H F, Zhou Y X. Journal of Materials Engineering, 2022(8), 050 (in Chinese).
程宽, 赵洪峰, 周远翔. 材料工程, 2022(8), 050.
18 Meng P F, Lyu S, Hu J, et al.Ceramics International, 2016, 43(5), 4127.
19 Liu D J, Wang W Q, Wang F, et al. Materials Science in Semiconductor Processing, 2020, 117, 1369.
20 Tang Z, Ning K, Fu Z Y, et al. Journal of Materials Science & Technology, 2022, 108, 82.
21 Wang X X, Li T, Chen Z P.Materials Reports, 2011, 25(22), 4 (in Chinese).
王晓雪, 李涛, 陈镇平. 材料导报, 2011, 25(22), 4.
22 Tian T, Zheng L Y, Matejka P, et al. ACS Applied Materials & Interfaces, 2021, 13, 35924.
23 Jiang H B, Ren X, Lao X B, et al.Journal of the European Ceramic So-ciety, 2022, 42(9), 3898.
[1] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[2] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[3] 周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
[4] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[5] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[6] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[7] 梁李斯, 郭文龙, 马洪月, 弥晗, 张宇, 米嘉毓, 李林波. 多孔吸声材料的吸声性能预测及吸声模型研究进展[J]. 材料导报, 2022, 36(23): 21030180-8.
[8] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[9] 张承承. 复合材料非线性渐进损伤分析模型的建立及工程应用[J]. 材料导报, 2020, 34(18): 18030-18034.
[10] 张吴欣, 李志恒, 周梅琳, 尹玉, 刘凌云. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12): 12169-12172.
[11] 胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
[12] 王磊, 王党会, 肖美霞. 磷酸双乙酸胍分子中基团间作用的量子化学从头算研究[J]. 材料导报, 2019, 33(20): 3508-3511.
[13] 李亚鹏, 李颖峰, 贺志荣, 郭从盛, 闫群民, 徐峰. 金属与半导体肖特基接触势垒模型及其载流子传输机制的研究进展[J]. 《材料导报》期刊社, 2017, 31(3): 57-62.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed