Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 22110070-5    https://doi.org/10.11896/cldb.22110070
  高分子与聚合物基复合材料 |
改性纳米锂皂石强化高温泡沫调驱性能研究
裴海华1,2,*, 赵建伟1,2, 郑家桢1,2, 张贵才1,2, 张菅1,2, 蒋平1,2
1 深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580
2 中国石油大学(华东)石油工程学院,山东 青岛 266580
Study on Modified Nano-laponite to Enhance Profile Control and Flooding Performance of High-temperature Foam
PEI Haihua1,2,*, ZHAO Jianwei1,2, ZHENG Jiazhen1,2, ZHANG Guicai1,2, ZHANG Jian1,2, JIANG Ping1,2
1 State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
下载:  全 文 ( PDF ) ( 3385KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用烷基胺改性纳米锂皂石颗粒构建了高温泡沫体系,对其耐温耐盐性能进行评价,并通过非均质填砂管实验评价了高温泡沫体系对蒸汽的调驱性能。红外光谱表征和接触角测定结果证明了烷基胺通过吸附在纳米锂皂石颗粒表面将其润湿性由强亲水变成弱亲水,使其可以吸附在气液界面上,并形成固体颗粒界面膜,增强了泡沫液膜的刚性强度,从而达到提高泡沫稳定性目的。经烷基胺表面改性纳米锂皂石的稳泡能力得到大幅提升,质量分数1.0%改性纳米锂皂石颗粒可将泡沫的析液半衰期提高至275 min,且具有较好的耐温耐盐性能,在250 ℃和40 000 mg/L的矿化度条件下能保持较好的泡沫稳定性。改性纳米锂皂石强化泡沫体系对高温蒸汽具有优异的调驱性能,在250 ℃条件的阻力因子在30以上,在非均质条件下可以有效调整蒸汽的吸汽剖面,扩大蒸汽的波及体积,进而大幅度提高蒸汽驱采收率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴海华
赵建伟
郑家桢
张贵才
张菅
蒋平
关键词:  高温泡沫  纳米锂皂石  表面改性  调驱性能  提高采收率    
Abstract: The high-temperature foam system was constructed by alkylamine modified nano-laponite, and its temperature-resistant and salt-resistant performance was evaluated. The steam profile control and flooding performance of the high-temperature foam system was evaluated by heterogeneous sandpack flooding tests. The results of infrared spectrum characterization and contact angle measurement show that the wettability of nano-laponite is changed from strong hydrophilic to weak hydrophilic by adsorbing alkylamine on the surface of nano-laponite, so that the modified nano-laponite can be adsorbed on the gas-liquid interface to form a solid particle interfacial film, which enhances the rigid strength of liquid film and improves the foam stability. The foam stability stabilized by alkylamine-modified nano-laponite can be greatly improved. The half-life of foam can be increased to 275 min by addition of 1.0% modified nano-laponite, and it has good temperature and salt resistance, which can maintain good foam stability at 250 ℃ and 40 000 mg/L salinity. The modified nano-laponite enhanced foam system has excellent profile control and flooding performance for high-temperature steam, and the resistance factor can reach more than 30 at 250 ℃. The modified nano-laponite enhanced foam system can effectively adjust the profile of steam injection, which resulting in increase of the sweep efficiency of steam flooding, and thus greatly improving the oil recovery of steam flooding in the heterogeneous formations.
Key words:  high-temperature foam    nano-laponite    surface modification    profile control and flooding performance    enhanced oil recovery
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TE357  
基金资助: 国家重点研发计划(2018YFA0702400);山东省自然科学基金(ZR2019MEE085)
通讯作者:  *裴海华,中国石油大学(华东)石油工程学院副教授,硕士研究生导师。研究方向为纳米材料提高原油采收率。peihaihua@upc.edu.cn   
引用本文:    
裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
PEI Haihua, ZHAO Jianwei, ZHENG Jiazhen, ZHANG Guicai, ZHANG Jian, JIANG Ping. Study on Modified Nano-laponite to Enhance Profile Control and Flooding Performance of High-temperature Foam. Materials Reports, 2025, 39(2): 22110070-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110070  或          https://www.mater-rep.com/CN/Y2025/V39/I2/22110070
1 Dong X H, Liu H Q, Chen Z X, et al. Applied Energy, 2019, 239, 1190.
2 Jiang Q, You H J, Pan J J, et al. Special Oil & Gas Reservoirs, 2020, 27(6), 30(in Chinese).
蒋琪, 游红娟, 潘竟军, 等.特种油气藏, 2020, 27(6), 30.
3 Yang Yong. Petroleum Geology and Recovery Efficiency, 2021, 28(6), 1(in Chinese).
杨勇.油气地质与采收率, 2021, 28(6), 1.
4 Liu H Q, Dong X H. Petroleum Science Bulletin, 2022, 7(2), 174(in Chinese).
刘慧卿, 东晓虎.石油科学通报, 2022, 7(2), 174.
5 Randy A P, Tayfun B. Journal of Petroleum Science and Engineering, 2022, 208, 109717.
6 Sun H Q. Oil & Gas Geology, 2020, 41(5), 110(in Chinese).
孙焕泉.石油与天然气地质, 2020, 41(5), 110.
7 Khajehpour M, Etminan S R, Goldman J, et al. SPE Journal. 2018, 23, 2232.
8 Yekeen N, Manan M A, Idris A K, et al. Journal of Petroleum Science and Engineering, 2018, 164, 43.
9 Medina O E, Olmos C, Lopera S H. Energies, 2019, 12(24), 4671.
10 Li Z M, Hou D W, Lu T, et al. Oilfield Chemistry, 2019, 36(3), 494(in Chinese).
李兆敏, 侯大炜, 鹿腾, 等.油田化学, 2019, 36(3), 494.
11 Zhang X, Zhang T C, Jiang P, et al. Chemical Journal of Chinese Universities, 2020, 41(5), 1076(in Chinese).
张旋, 张天赐, 蒋平, 等. 高等学校化学学报, 2020, 41(5), 1076.
12 Chen S Y, Hou Q F, Li W J, et al. Journal of Dispersion Science and Technology, 2014, 35, 1214.
13 Luo W L, Dang H, Zhou X Y, et al. Chemical Research and Application, 2018, 30(10), 1683 (in Chinese).
罗文利, 党辉, 邹新源, 等. 化学研究与应用, 2018, 30(10), 1683.
14 Zheng W, Tan X H, Jiang W D, et al. ACS Omega, 2021, 6(35), 22709.
15 Chen S Y, Liu H J, Yang J J, et al. Journal of Molecular Liquids, 2019, 291, 111250.
16 Chen S Y, Zhou Y J, Wang G H, et al. Journal of Dispersion Science and Technology, 2016, 37, 479.
17 Pei H H Zheng J Z, Zhang G C,et al. Journal of Molecular Liquids, 2022, 368, 120647.
18 Zheng J Z, Zhang G C, Pei H H, et al. Oilfield Chemistry, 2022, 39(1), 82(in Chinese).
郑家桢, 张贵才, 裴海华, 等.油田化学, 2022, 39(1), 82.
19 Qu H Y, Liu Q, Peng B, et al. Petroleum Geology and Recovery Efficiency, 2019, 26(5), 120(in Chinese).
曲海莹, 刘琦, 彭勃, 等.油气地质与采收率, 2019, 26(5), 120.
20 Rattanaudom P, Shiau B J, Suriyapraphadilok U, et al. Journal of Dispersion Science and Technology, 2021, 42(4), 581.
21 Liu Q, Zhang S, Sun D, Xu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 151.
22 Alyousef Z, Almobarky M, Schechter D. Energy Fuels, 2017, 31(10), 10620.
23 Su Q, Li Z M, Li S Y, et al. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6), 101(in Chinese).
孙乾, 李兆敏, 李松岩, 等.中国石油大学学报(自然科学版), 2016, 40(6), 101.
24 Li S Y, Li Z M, Li B F. Journal of Petroleum Science and Engineering, 2014, 118, 88.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[4] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[5] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[6] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[7] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[8] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[9] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[10] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[11] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[12] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[13] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[14] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[15] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed