Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070023-6    https://doi.org/10.11896/cldb.24070023
  高分子与聚合物基复合材料 |
基于金属多酚网络的碳纤维表面改性及其增强环氧树脂复合材料界面性能
胡文龙1, 杨露露1, 苗磊2, 黄频波3, 张树正1, 赵志博2, 仓钰1, 杨斌1,*
1 同济大学航空航天与力学学院,上海 200092
2 中国人民解放军91049部队,山东 青岛 266102
3 成都航空职业技术学院航空维修工程学院,成都 610100
Constructing Metal Phenolic Networks onto Carbon Fiber Surface Toward Enhanced Interfacial Properties of Composites
HU Wenlong1, YANG Lulu1, MIAO Lei2, HUANG Pinbo3, ZHANG Shuzheng1, ZHAO Zhibo2, CANG Yu1, YANG Bin1,*
1 School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2 91049th Unit, PLA (The Chinese People's Liberation Army), Qingdao 266102, Shandong, China
3 School of Aviation Maintenance Engineering, Chengdu Aeronautic Polytechnic, Chengdu 610100, China
下载:  全 文 ( PDF ) ( 19964KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维增强复合材料界面性能薄弱是一个固有的问题,限制了其广泛应用。解决该问题的有效方法之一是对碳纤维表面进行改性。采用简单的浸涂法首先将单宁酸和硅烷偶联剂沉积在碳纤维表面,二者通过共价键相互交联形成均匀的涂层。随后继续加入铜离子,其与单宁酸发生配位反应在纤维表面形成了致密的纳米颗粒结构的金属多酚网络。结果表明:金属多酚网络内部的共价键和配位键赋予了其优异的力学性能,使其可以承担部分拉伸载荷,因此改性后碳纤维的拉伸强度相较于脱浆后碳纤维提高了10.2%。同时,金属多酚网络中的活性基团可以与环氧树脂之间形成化学键,其致密的纳米颗粒结构也可以与树脂之间形成强的机械连锁作用。在化学键和机械连锁的协同作用下,改性后碳纤维/环氧复合材料的界面剪切强度相较于未改性的复合材料提高了104.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡文龙
杨露露
苗磊
黄频波
张树正
赵志博
仓钰
杨斌
关键词:  碳纤维  界面性能  金属多酚网络  环氧树脂  表面改性    
Abstract: The wide applications of carbon fiber reinforcement composites are restricted due to their poor interfacial properties. One promising route is the surface modification of carbon fiber. Herein, tannic acid and silane coupling agent were firstly deposited on the fiber surface by a simple dip-coating method. They cross-linked to each other by covalent bonds to form the uniform coating. Subsequently, the metal phenolic networks (MPNs) with dense nano-sized particle structure were synthesized on the fiber surface by introducing copper ions, in which tannic acid and copper ions were linked by a coordination bond. Compared with unsized carbon fiber, the tensile strength of modified carbon fiber was increased by 10.2%. This can be attributed to the covalent and coordination bonds endow the MPNs with great mechanical properties, thus enabling them to withstand some tensile loads. Meanwhile, the functional groups present in MPNs are able to form chemical bonds with epoxy resin, while the dense nano-sized particle structure of MPNs can facilitate the formation of strong mechanical interlocking with epoxy resin. Under the synergistic effect of chemical bonding and mechanical interlocking, the interfacial shear strength of modified carbon fiber/epoxy composite is increased by 104.2% compared with that of the unsized carbon fiber/epoxy composite.
Key words:  carbon fiber    interfacial property    metal phenolic networks    epoxy resin    surface modification
发布日期:  2025-08-28
ZTFLH:  TB332  
基金资助: 国家优秀青年科学基金(12222206);国家自然科学基金(12072238);上海市青年科技启明星(22QA1409500);中央高校基本科研基金(22120240089)
通讯作者:  *杨斌,博士,同济大学航空航天与力学学院教授、博士研究生导师。目前主要从事复合材料力学与健康监测方面的研究。yangbin_tj@tongji.edu.cn   
作者简介:  胡文龙,同济大学航空航天与力学学院博士研究生,在杨斌教授的指导下进行研究。目前主要研究方向为碳纤维表面改性。
引用本文:    
胡文龙, 杨露露, 苗磊, 黄频波, 张树正, 赵志博, 仓钰, 杨斌. 基于金属多酚网络的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 材料导报, 2025, 39(17): 24070023-6.
HU Wenlong, YANG Lulu, MIAO Lei, HUANG Pinbo, ZHANG Shuzheng, ZHAO Zhibo, CANG Yu, YANG Bin. Constructing Metal Phenolic Networks onto Carbon Fiber Surface Toward Enhanced Interfacial Properties of Composites. Materials Reports, 2025, 39(17): 24070023-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070023  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070023
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1 (in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
2 Vistasp M K, Xian G J, Hong S K. Composites Part A, 2021, 149, 106570.
3 Chen X Z, Peng Y, Wang K, et al. Journal of Materials Research and Technology, 2024, 28, 446.
4 Sun Z L, Luo Y X, Chen C Y, et al. Progress in Materials Science, 2024, 142, 101221.
5 Li Y, Jiang B, Huang Y D. Applied Surface Science, 2020, 514, 145870.
6 Li J, Cai C L. Current Applied Physics, 2011, 11(1), 50.
7 Li J, Yang Z F, Huang X F, et al. Applied Surface Science, 2022, 585, 152717.
8 Yang X Q, Ren H L, Luo J M, et al. Acta Materiae Compositae Sinica, 2023, 40(11), 6061 (in Chinese).
杨雪勤, 任宏亮, 骆佳美, 等. 复合材料学报, 2023, 40(11), 6061.
9 Wang Z Y, Jiang N, Wang M D, et al. Acta Materiae Compositae Sinica, DOI:10.13801/j.cnki.fhclxb.20240517.004 (in Chinese).
王在跃, 姜宁, 王明道, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20240517.004.
10 Chen J C, Yang D Z, Yuan B G, et al. Composites Communications, 2023, 40, 101625.
11 Yao Z Q, Wang C G, Wang Y X, et al. Composite Structures, 2022, 292, 115665.
12 Wu Q, Bai H H, Zhao R Y, et al. Surfaces and Interfaces, 2023, 40, 103070.
13 Zhang X Q, Sun T, Qiu B W, et al. Composites Part B, 2022, 230, 109492.
14 Zhang P F, Yang G C, Zhang L F, et al. Carbon Trends, 2022, 9, 100203.
15 Dong J D, Jia C Y, Wang M Q, et al. Composites Science and Technology, 2017, 149, 75.
16 Zhang Y N, Liu X Y, Ji F, et al. Composites Communications, 2022, 29, 101005.
17 Fan W X, Wang Y X, Chen J Q, et al. Journal of Functional Materials, 2015, 46(20), 20097 (in Chinese).
范汶鑫, 王延相, 陈纪强, 等. 功能材料, 2015, 46(20), 20097.
18 Luo J, Lai J P, Zhang N, et al. ACS Sustainable Chemistry & Engineering, 2015, 4(3), 1404.
19 Shao C Y, Wang M, Meng L, et al. Chemistry of Materials, 2018, 30(9), 3110.
20 Li Y, Miao Y, Yang L N, et al. Advanced Science, 2022, 9, 2202684.
21 Geng H M, Zhong Q Z, Li J H, et al. Chemical Review, 2022, 122, 11432.
22 Han W, Zhang H P, Tavakoli J, et al. Composites Part A, 2018, 107, 626.
23 Zhang M J, Cheng C X, Guo C Q, et al. Composites Science and Technology, 2021, 204, 108639.
24 Zhu Y F, Wang N, Ling J H, et al. Journal of Colloid and Interface Science, 2024, 660, 637.
25 Liu Y, Li G L, Han Q, et al. Journal of Membrane Science, 2024, 695, 122480.
26 Wu Q, Xiao B L, Liu Q L, et al. Composites Part B, 2023, 266, 111032.
27 Li N, Li X Y, Liu L, et al. Acta Materiae Compositae Sinica, 2020, 37(7), 1571 (in Chinese).
李娜, 李晓屿, 刘丽, 等. 复合材料学报, 2020, 37(7), 1571.
28 Sun Na, Zhu Bo, Gao Xueping, et al. Composites Science and Technology, 2023, 234, 109950.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 高英力, 李昀博, 田维伟, 朱俊材, 廖美捷, 王蒴. 胶粉改性沥青预处理技术研究进展[J]. 材料导报, 2025, 39(9): 24040022-10.
[3] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[4] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[5] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[6] 林家茂, 姚美意, 陈哲斌, 徐诗彤, 胡丽娟. 生物医用锆基合金的研究进展[J]. 材料导报, 2025, 39(5): 24020141-10.
[7] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[8] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[9] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[10] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[11] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[12] 宋伟, 范吉轩, 李琳, 冯景涛, 宋文宏, 彭修峰, 苟萌萌, 朱立鹏. 联苯芳香酯型液晶环氧树脂制备及性能研究[J]. 材料导报, 2025, 39(17): 24070137-6.
[13] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[14] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[15] 段忆盟, 杨昊, 王鑫, 黄骏, 赵思瑞, 周福升, 高超. 基于Johnson-Cook模型的盆式绝缘子环氧树脂材料裂纹缺陷扩展行为研究[J]. 材料导报, 2025, 39(12): 24050030-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed