Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24060047-8    https://doi.org/10.11896/cldb.24060047
  金属与金属基复合材料 |
Mg88Ce4Ca6In2储氢材料制备及水解放氢性能
张倩倩1, 赵阳1,*, 李建秋1,2,*, 雍辉3, 郑越4, 宋飞飞4, 王彦皓1, 康忠1
1 中国海洋工程研究院(青岛)水下能源动力研究中心,山东 青岛 266500
2 清华大学车辆与运载学院,北京 100084
3 太原科技大学材料科学与工程学院,太原 030024
4 中核北方核燃料元件有限公司,内蒙古 包头 041035
Preparation of Mg88Ce4Ca6In2 Hydrogen Storage Material and Its Hydrolysis Performance for Hydrogen Release
ZHANG Qianqian1, ZHAO Yang1,*, LI Jianqiu1,2,*, YONG Hui3, ZHENG Yue4, SONG Feifei4, WANG Yanhao1, KANG Zhong1
1 Research Center for Undersea Energy and Power Systems, China Institute of Ocean Engineering (Qingdao), Qingdao 266500, Shandong, China
2 School of Vehicle and Mobility, Tsinghua University, Beijing 100084
3 School of Materials Science & Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
4 China North Nuclear Fuel Co., Ltd., Baotou 041035, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 13655KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据氢燃料电池供氢系统需求,以Mg为基础元素,引入Ce、Ca、In元素,并与Fe@C催化剂复合,成功制备了镁基Mg-Ce-Ca-In/Fe@C-BM复合材料。采用XRD、SEM、粒径分析等手段分析材料氢化前后的物相组成和微观结构,研究了不同组分合金的吸氢性能及氢化后的水解放氢性能。在此基础上,设计并搭建了水解放氢测试系统,开展了300 g量级水解放氢性能评价。结果表明,合金中存在Mg-(Ce/Ca/In)合金相,其氢化后形成相应氢化物,吸氢和水解放氢性能明显改善;添加催化剂并进行球磨的预处理方式有助于进一步提升储氢密度。批量制备的氢化试样H-Mg88Ce4Ca6In2/Fe@C-BM在80 ℃水浴下与柠檬酸溶液反应3 min内水解放氢量平均达1 646 mL/g。搭建的百克级放氢反应测试系统在2倍反应溶液的低用水环境下5 h内共产生氢气345 SL,单位放氢量为1.15 SL/g,可以以2 L/min的流量稳定供氢,满足后端燃料电池稳定供氢的需求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张倩倩
赵阳
李建秋
雍辉
郑越
宋飞飞
王彦皓
康忠
关键词:  镁基合金  氢化  水解  放氢  动力学  氢燃料电池    
Abstract: According to hydrogen fuel cell hydrogen supply system requirements, the Mg-Ce-Ca-In/Fe@C-BM composites were successfully prepared by taking Mg as the base element, introducing Ce, Ca, In elements and combining with Fe@C catalyst. XRD, SEM, particle size distribution and other methods were used to analyze phase composition and characterize the microstructure of these samples before and after hydrogenation, and the properties of hydrogen absorption of different component alloys and hydrolysis performance of hydrogenated materials were studied. In addition, the test system for hydrolytic hydrogen release was also designed and established to evaluate the hydrolysis performance of 300-gram-scale hydrogen release system. The results show that there are Mg-(Ce/Ca/In) alloy phases in the alloy Mg88Ce4Ca6In2, and the correspon-ding hydrides are formed after hydrogenation, which can improve the hydrogen absorption and hydrolysis properties obviously. And the pretreatment method of adding catalyst and then ball-milling can further improve the hydrogen storage density of materials, including alloys and hydroge-nated samples. The hydrolysis reaction of H-Mg88Ce4Ca6In2/Fe@C-BM prepared in batches was carried out in the citric acid solution under the condition of 80 ℃ water bath, and the average amount of hydrogen generated reached 1 646 mL/g within 3 min. In the hectogram-scale hydrolytic hydrogen release test system, total hydrogen release reaches 345 SL in 5 hours, and the unit hydrogen emission release 1.15 SL/g, which can supply hydrogen stably at a 2 L/min flow rate to meet the stable supply of hydrogen for back-end fuel cells.
Key words:  magnesium-based alloy    hydrogenation reaction    hydrolysis    hydrogen release    kinetics    hydrogen fuel cell
发布日期:  2025-08-28
ZTFLH:  TK91  
  TG139+.7  
基金资助: 崂山实验室科技创新项目(LSKJ202204502)
通讯作者:  *赵阳,博士,中国海洋工程研究院(青岛)水下能源动力研究中心助理研究员。目前主要从事水解制氢、质子交换膜燃料电池、高安全消氢等方面的研究工作。zhaoyang@haigongyuan.com.cn
李建秋,博士,清华大学车辆与运载学院教授,博士研究生导师。目前主要从事柴油机电子控制系统、汽车电子共性关键技术研究等方面的工作。lijianqiu@tsinghua.edu.cn   
作者简介:  张倩倩,博士,中国海洋工程研究院(青岛)水下能源动力研究中心高级工程师。目前主要研究领域为镁基储氢材料制备及应用、产物回收及资源循环利用等。
引用本文:    
张倩倩, 赵阳, 李建秋, 雍辉, 郑越, 宋飞飞, 王彦皓, 康忠. Mg88Ce4Ca6In2储氢材料制备及水解放氢性能[J]. 材料导报, 2025, 39(17): 24060047-8.
ZHANG Qianqian, ZHAO Yang, LI Jianqiu, YONG Hui, ZHENG Yue, SONG Feifei, WANG Yanhao, KANG Zhong. Preparation of Mg88Ce4Ca6In2 Hydrogen Storage Material and Its Hydrolysis Performance for Hydrogen Release. Materials Reports, 2025, 39(17): 24060047-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060047  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24060047
1 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1 (in Chinese).
邓霁峰, 陈顺鹏, 武晓娟, 等. 无机材料学报, 2021, 36(1), 1.
2 Shen P, Liu H, Zhu Y F, et al. Chinese Journal of Power Sources, 2011, 35(7), 876 (in Chinese).
沈品, 刘虎, 朱云峰, 等. 电源技术, 2011, 35(7), 876.
3 Yang B, Zou J X, Zeng X Q, et al. Nonferrous Metals Engineering, 2019(9), 10 (in Chinese).
杨波, 邹建新, 曾小勤, 等. 有色金属工程, 2019(9), 10.
4 Yu D X, Liu Y, Yu X, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(7), 110 (in Chinese).
于敦喜, 刘颖, 喻鑫, 等. 华中科技大学学报(自然科学版), 2022, 50(7), 110.
5 Wu J A, Zou Y J, Sun L X. Materials China, 2023, 42(2), 105 (in Chinese).
吴加鳌, 邹勇进, 孙立贤. 中国材料进展, 2023, 42(2), 105.
6 Wang Y H, Wang J K, Zhao J C, et al. Materials Reports, 2011, 25(9), 120 (in Chinese).
汪云华, 王靖坤, 赵家春, 等. 材料导报, 2011, 25(9), 120.
7 Wu X J, Xue H Q, Peng Y, et al. Rare Metal Materials and Engineering, 2022, 51(2), 727 (in Chinese).
武晓娟, 薛华庆, 彭涌, 等. 稀有金属材料与工程, 2022, 51(2), 727.
8 Lu Q, Huang F, Guo X. Materials Reports, 2021, 35(9), 9033 (in Chinese).
卢祺, 黄锋, 郭逊. 材料导报, 2021, 35(9), 9033.
9 Yong H, Guo S H, Yuan Z M, et al. Journal of Rare Earths, 2020, 38(6), 633.
10 Li Y J, Yao J W, Yong H, et al. Materials Reports, 2022, 36(20), 22010264 (in Chinese).
李英杰, 姚继伟, 雍辉, 等. 材料导报, 2022, 36(20), 22010264.
11 Zhang Y H, Zhang W, Bu W G, et al. Renewable Energy, 2019, 132, 167.
12 Ouyang L Z, Yang X S, Zhu M, et al. The Journal of Physical Chemistry C, 2014, 118 (15), 7808.
13 Ma M L, Duan R M, Ouyang L Z, et al. International Journal of Hydrogen Energy, 2017, 42(35), 22312.
14 Ma M L. Performance and regulation of hydrogen production from magnesium-based alloys and hydrides. Ph. D. Thesis, South China University of Technology, China, 2018 (in Chinese).
马妙莲. 镁基合金及氢化物制氢性能与调控. 博士学位论文, 华南理工大学, 2018.
15 Ouyang L Z, Cao Z J, Wang H, et al. Journal of Alloys and Compounds, 2014, 586, 113.
16 Zhong H C, Wang H. The Chinese Journal of Nonferrous Metals, 2014, 24(6), 1486 (in Chinese).
钟海长, 王辉. 中国有色金属学报, 2014, 24(6), 1486.
17 Yang K. Preparation and application of magnesium based hydrogen storage materials. Master's Thesis, Shandong University of Technology, China, 2022 (in Chinese).
杨昆. 镁基储氢材料的制备与应用研究. 硕士学位论文, 山东理工大学, 2022.
18 Yong H, Wei X, Hu J F, et al. Renewable Energy, 2020, 162, 2153.
19 Wu X J, Xue H Q, Peng Y, et al. Materials, 2022, 15, 1593.
20 Xu X L, Yong H, Zhao Y, et al. Journal of Physics and Chemistry of Solids, 2024, 184, 111732.
21 Zhou C, Zhang J G, Zhu Y F, et al. Journal of Power Sources, 2021, 494, 229.
22 Hiraki T, Hiroi S, Akashi T, et al. International Journal of Hydrogen Energy, 2012, 37(17), 12114.
23 Qin H Y, Li H Y, Fu Q, et al. Sustainable Materials and Technologies, 2022, 33, e00505.
24 Pang Y X, Shi W R, Guo Z, et al. International Journal of Hydrogen Energy, 2024, 50, 1204.
25 Zheng J, Xu J X, Sun B X, et al. Research on the key technology of practical hydrogen generation by hydrolysis of magnesium hydride. Technical Report, Peking University, China, 2019, 5 (in Chinese).
郑捷, 徐嘉祥, 孙冰雪, 等. 氢化镁水解制氢实用化的关键技术研究. 技术报告, 北京大学, 2019, 5.
26 Zhang Q Y, Ren L, Li Y H, et al. Science & Technology Review, 2022, 40(23), 6 (in Chinese).
张秋雨, 任莉, 李映辉, 等. 科技导报, 2022, 40(23), 6.
27 Uan J, Yu S, Lin M C, et al. International Journal of Hydrogen Energy, 2009, 34, 6137.
28 Uesugi H, Sugiyama T, Nii H, et al. Journal of Alloys and Compounds, 2011, 509S, S650.
29 Alpatent前沿研发信息介绍平台. 可以安全储存和运输氢气的氢化镁. https://mp.weixin.qq.com/s/5CZuSS6VLxPCMt6JyBKXxA.
30 Zhu W, Ren L, Li Y H, et al. Energy Material Advances, 2023, 4, 0069.
31 Ma Z W, Huang Z Y, Li Z, et al. Energy Storage Materials, 2023, 56, 432.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[3] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[4] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[5] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[6] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[7] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[8] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[9] 于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
[10] 汪科良, 刑振华, 任守志, 赵蒙, 周晖, 张凯锋, 成志忠, 冯兴国, 曹珍, 贺颖. 超润滑薄膜研究进展及在航天领域的应用展望[J]. 材料导报, 2025, 39(15): 25030083-9.
[11] 陈晓平, 陶贤成, 鲍听, 赵宁宁, 楼玉民, 岳建岭. GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究[J]. 材料导报, 2025, 39(14): 24060116-7.
[12] 李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
[13] 范孟娜, 陶雪飞, 宗洪祥, 丁向东. 应变玻璃统一形成判据的研究进展[J]. 材料导报, 2025, 39(11): 24060225-10.
[14] 耿瑞文, 周星辰, 田助新, 谢启明, 李立军, 吴海华, 双佳俊, 杨志豇. 6H-SiC纳米磨削机理的分子动力学研究[J]. 材料导报, 2025, 39(10): 24080001-8.
[15] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed