Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24040050-9    https://doi.org/10.11896/cldb.24040050
  金属与金属基复合材料 |
V含量对S30403奥氏体不锈钢高温抗氧化性能的影响
沈彬1,2, 顾尚军3, 王劼3, 魏福龙3, 谢祥3, 黎志英1,2, 张钧祥1,2, 李长荣1,2,*
1 贵州大学材料与冶金学院,贵阳 550025
2 贵州省冶金工程与过程节能重点实验室,贵阳 550025
3 首钢水城钢铁有限公司,贵州 六盘水 553000
Effect of V Content on High-temperature Oxidation Resistance of S30403 Austenitic Stainless Steel
SHEN Bin1,2, GU Shangjun3, WANG Jie3, WEI Fulong3, XIE Xiang3, LI Zhiying1,2, ZHANG Junxiang1,2, LI Changrong1,2,*
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2 Guizhou Province Key Laboratory of Metallurgical and Process Energy Saving, Guiyang 550025, China
3 Shougang Shuicheng Iron and Steel (Group)Co., Ltd., Liupanshui 553000, Guizhou, China
下载:  全 文 ( PDF ) ( 80712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 奥氏体不锈钢作为核电常用的结构材料,在高温服役时,材料表面氧化物的增厚可能导致过热和故障,造成重大安全事故。本工作采用静态不连续氧化增重法研究了六种不同V含量的S30403奥氏体不锈钢在900 ℃空气环境下的高温抗氧化性能。结果显示,1#钢在氧化100 h后的平均氧化速率为0.056 9 g·m-2·h-1,符合完全抗氧化级别,当钢中V含量增加至0.49%(质量分数)时,6#钢的平均氧化速率达到最大值,为0.693 1 g·m-2·h-1,符合抗氧化级别。实验钢中的V元素促进了Cr和Si元素的内氧化,含V钢表面Cr2O3和SiO2氧化物含量减少,Mn和Fe元素通过氧化膜向外扩散形成尖晶石结构的MnCr2O4。随着钢中V含量的增加,2#—6#钢表面氧化膜的连续性和致密性逐渐降低,高温抗氧化性能下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈彬
顾尚军
王劼
魏福龙
谢祥
黎志英
张钧祥
李长荣
关键词:  奥氏体不锈钢  高温抗氧化性能  扩散控制  氧化膜    
Abstract: Austenitic stainless steel, commonly used as a structural material in nuclear power plants, may experience overheating and failures due to the thickening of surface oxides at high temperatures, leading to significant safety accidents. This study utilized the static discontinuous oxidation weight gain method to investigate the high-temperature oxidation resistance of six different V-content S30403 austenitic stainless steels in a 900 ℃ air environment. The results show that Steel 1# exhibited an average oxidation rate of 0.056 9 g·m-2·h-1 after 100 hours of oxidation, meeting the complete oxidation resistance level. As the V content in the steel increased to 0.49%, Steel 6# demonstrated the highest average oxidation rate of 0.693 1 g·m-2·h-1, corresponding to the oxidation resistance level. The V element in the experimental steels facilitated the internal oxidation of Cr and Si elements, leading to a reduction in the surface oxide content of Cr2O3 and SiO2 in V-containing steels. Mn and Fe elements diffused outward through the oxide film to form a spinel structure of MnCr2O4. With the increase of V content in the steels, the continuity and density of the surface oxide film on Steels 2# to 6# gradually decrease, resulting in a decline in high-temperature oxidation resistance performance.
Key words:  austenitic stainless steel    high-temperature oxidation resistance    diffusion control    oxide film
发布日期:  2025-08-28
ZTFLH:  TG144  
基金资助: 国家自然科学基金(52074095);贵州省科技成果转化项目(黔科合成果[2023]一般100);贵州省基础研究计划项目(黔科合基础-ZK[2023]一般072);贵州省科技支撑计划项目(黔科合支撑[2023]一般404)
通讯作者:  *李长荣,博士,贵州大学教授、博士研究生导师。主要从事金属熔体纯净化理论与工艺等相关领域的研究。crli@gzu.edu.cn   
作者简介:  沈彬,硕士。主要从事奥氏体不锈钢组织和高温性能方面的研究。
引用本文:    
沈彬, 顾尚军, 王劼, 魏福龙, 谢祥, 黎志英, 张钧祥, 李长荣. V含量对S30403奥氏体不锈钢高温抗氧化性能的影响[J]. 材料导报, 2025, 39(17): 24040050-9.
SHEN Bin, GU Shangjun, WANG Jie, WEI Fulong, XIE Xiang, LI Zhiying, ZHANG Junxiang, LI Changrong. Effect of V Content on High-temperature Oxidation Resistance of S30403 Austenitic Stainless Steel. Materials Reports, 2025, 39(17): 24040050-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040050  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24040050
1 Chen L, Ma X, Wang L, et al. Materials & Design, 2011, 32(4), 2206.
2 Rozmus-Górnikowska M, Kusiński J, Cempura G, et al. International Journal of Pressure Vessels and Piping, 2023, 203, 104951.
3 Jung S, Jeon C, Jo Y H, et al. Materials Science and Engineering A, 2016, 656, 190.
4 Liang X, Zhang Y, Zhang Q, et al. Materials Today Communications, 2023, 35, 105799.
5 Lee K, Suh J, Huh J, et al. Materials Characterization, 2013, 83, 49.
6 Chandra K, Kain V, Tewari R. Corrosion Science, 2013, 67, 118.
7 Wang M, Zhou Z, Sun H, et al. Journal of Nuclear Materials, 2012, 430(1-3), 259.
8 Moteshakker A, Danaee I. Journal of Materials Science & Technology, 2016, 32(3), 282.
9 Moura V, Kina A Y, Tavares S S M, et al. Journal of Materials Science, 2008, 43(2), 536.
10 Zinkle S J, Was G S. Acta Materialia, 2013, 61, 735.
11 Shen Z, Tweddle D, Yu H, et al. Acta Materialia, 2020, 194, 321.
12 Dubuisson P, Carlan Y D, Garat V, et al. Journal of Nuclear Materials, 2012, 428(1-3), 6.
13 Shen Z, Tweddle D, Yu H, et al. Acta Materialia, 2020, 194, 321.
14 Dubuisson P, Carlan Y D, Garat V, et al. Journal of Nuclear Materials, 2012, 428(1-3), 6.
15 Locatelli G, Mancini M, Todeschini N. Energy Policy, 2013, 61, 1503.
16 Azevedo C R F. Engineering Failure Analysis, 2011, 18(8), 1943.
17 Hu G D, Feng R, Li S Z, et al. Hot Working Technology, 2022, 51(18), 6(in Chinese).
胡国栋, 冯锐, 李书志, 等. 热加工工艺, 2022, 51(18), 6.
18 Park D, Huh M, Jung W, et al. Journal of Alloys and Compounds, 2013, 574, 532.
19 Liljestrand L G, Omsén A. Metallurgical Transactions A - Physical Metallurgy and Materials Science, 1975, 6(2).
20 Smabbasi S M, Ashokuhfar. Journal of Iron and Steel Research International, 2007, 6(14), 74.
21 Tu Y W, Zhu L H. Transactions of Materials and Heat Treatment, 2022, 43(12), 125(in Chinese).
涂有旺, 朱丽慧. 材料热处理学报, 2022, 43(12), 125.
22 Wen D H, Li Z, Jiang B B, et al. Materials Characterization, 2018, 144, 86.
23 Ramanathan L V. Corrosion Science, 1993, 35(5-8), 871.
24 Bischoff J, Motta A T. Journal of Nuclear Materials, 2012, 424(1-3), 261.
25 Bischoff J, Motta A T, Eichfeld C, et al. Journal of Nuclear Materials, 2013, 441(1-3), 604.
26 Fujikawa H, Newcomb S B. Oxidation of Metals, 2012, 77(1-2), 85.
27 Aviation Industry Standards of the People's Republic of China. Test Method for Determining the Oxidation Resistance of Steel and Superalloys:hb 5258-2000, China, 2000.
中华人民共和国航空工业标准. 钢及高温合金的抗氧化性测定试验方法:HB 5258-2000, 中国航空工业总公司第301研究所. 2000.
28 Zhang S, Li H, Jiang Z, et al. Materials Letters, 2023, 330, 133253.
29 Su M, Zhao J, Tian Z, et al. Journal of Materials Research and Technology, 2022, 19, 1510.
30 Xu S, Long F, Persaud S Y, et al. Corrosion Science, 2020, 165, 108380.
31 Zhao Q, Qiao Z, Dong J, et al. Fusion Engineering and Design, 2020, 161, 111991.
32 Zhao Y, Chen P, Wen W, et al. Journal of Materials Research and Technology, 2023, 26, 7816.
33 Cai X C, Ding S J, Jin S B, et al. Scripta Materialia, 2021, 204, 114155.
34 Zhang L, Yan W, Shi Q, et al. Corrosion Science, 2020, 167, 108519.
35 Zou D, Zhou Y, Zhang X, et al. Materials Characterization, 2018, 136, 435.
36 Chen H, Wang H, Sun Q, et al. Corrosion Science, 2018, 145, 90.
37 Singh Raman R K, Gnanamoorthy J B. Oxidation of Metals, 1992, 38(5-6), 483.
38 Liu L, Wu S, Dong Y, et al. Corrosion Science, 2016, 104, 236.
39 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Corrosion Science, 2016, 106, 188.
40 Zhang S, Li H, Jiang Z, et al. Journal of Materials Science and Technology, 2022, 115, 103.
41 Teng L D, Zhang T, Zang Q Y, et al. Journal of Iron and Steel Research, 2019, 31(4), 415(in Chinese).
滕铝丹, 张拓, 臧其玉, 等. 钢铁研究学报, 2019, 31(4), 415.
42 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Corrosion Science, 2016, 106, 188.
43 Fu G, Wei L, Shan X, et al. Surface and Coatings Technology, 2016, 294, 8.
[1] 安瞻, 徐驰, 龚翱翔, 佟振峰. 15-15Ti奥氏体不锈钢中D、He、Ne离子辐照损伤的TEM表征[J]. 材料导报, 2025, 39(6): 24010245-6.
[2] 姚通睿, 王曼, 席晓丽. 含Al耐热合金高温氧化行为研究现状[J]. 材料导报, 2025, 39(6): 24050040-10.
[3] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[4] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[5] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[6] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[7] 程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
[8] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[9] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[10] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[11] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[12] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[13] 李连奇, 杨占兵. 奥氏体不锈钢辐照肿胀和偏析的研究进展[J]. 材料导报, 2021, 35(5): 5122-5129.
[14] 刘成龙, 唐正友, 马亮, 马婉婉, 郭昊东, 丁桦. 254SMo超级奥氏体不锈钢时效析出行为及析出相对其力学性能的影响[J]. 材料导报, 2021, 35(24): 24147-24151.
[15] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed