TEM Characterization of D, He, Ne Ion Irradiation Damage of 15-15Ti Austenitic Stainless Steel
AN Zhan1, XU Chi2,*, GONG Aoxiang1, TONG Zhenfeng1,*
1 School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China 2 Key Laboratory of Beam Technology of the Ministry of Education, School of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract: 15-15Ti austenitic stainless steel is one of the candidate materials for commercial fast reactor cladding materials due to its excellent mechanical properties, high temperature stability, corrosion resistance and radiation resistance. At present, there are still few studies on the irradiation damage of 15-15Ti austenitic stainless steel, and the irradiation experiment mostly uses a lower irradiation dose, the experimental data corresponding to the extremely high irradiation dose in the commercial fast reactor are even more lacking. In order to explore the effect of extremely high irradiation dose on the irradiation damage of 15-15Ti austenitic stainless steel in commercial fast reactor, the experimental data supplement for the irradiation resistance of 15-15Ti austenitic stainless steel was provided, the samples were irradiated with D+, He+ and Ne+ by using transmission electron microscopy and nano-indentation techniques. The microstructure of irradiated samples was characterized by TEM, and the size and density of irradiation defects such as dislocation loops and bubbles were statistically analyzed. The results show that with the increase of irradiation dose, the size of dislocation loops and voids increases obviously, and the number density decreases. There is obvious void accumulation near the boundary between grain boundary and precipitate, and obvious irradiation hardening phenomenon.
1 Chen P, Zhang R Q, Duan Z G, et al. China Basic Science, 2021, 23(4), 1 (in Chinese). 陈平, 张瑞谦, 段振刚, 等. 中国基础科学, 2021, 23(4), 1. 2 Li L Q, Yang Z B. Materials Reports, 2021, 35(5), 5122 (in Chinese). 李连奇, 杨占兵. 材料导报, 2021, 35(5), 5122. 3 Hao Y C, Zhao M L, Luo L M. Materials for Mechanical Engineering, 2018, 42(7), 1 (in Chinese). 郝予琛, 赵美玲, 罗来马. 机械工程材料, 2018, 42(7), 1. 4 Xia S, Zhou B X. Journal of Shanghai University(Natural Science Edition), 2015, 21(2), 152 (in Chinese). 夏爽, 周邦新. 上海大学学报(自然科学版), 2015, 21(2), 152. 5 Fan X Y. Science and Technology Vision, 2017(29), 82 (in Chinese). 樊翔宇. 科技视界, 2017(29), 82. 6 Wu L, Xing C J, Yao C F, et al. Heat Treatment of Metals, 2016, 41(10), 21 (in Chinese). 吴林, 邢长军, 姚春发, 等. 金属热处理, 2016, 41(10), 21. 7 David C, Panigrahi B K, Balaji S. Journal of Nuclear Materials, 2008, 383(1), 132. 8 Kato T, Takahashi H, Izumiya M. Materials Transactions, JIM, 2007, 32(10), 921. 9 Ding X, Huang C, Li R S. Materials for Mechanical Engineering, 2020, 44(7), 70 (in Chinese). 丁寻, 黄晨, 李荣生. 机械工程材料, 2020, 44(7), 70. 10 Wei J, Luo L, Huang Q Y, et al. Hot Working Technology, DOI:10. 14158/j. cnki. 1001-3814. 20213073 (in Chinese). 卫捷, 罗林, 黄群英, 等. 热加工工艺, DOI:10. 14158/j. cnki. 1001-3814. 20213073. 11 Gao P. Steel Pipe, 2022, 51(1), 13 (in Chinese). 高佩. 钢管, 2022, 51(1), 13. 12 Gong A X, Xu C, An Z, et al. Materials Reports, 2024, 38(10), 1 (in Chinese). 龚翱翔, 徐驰, 安瞻, 等. 材料导报, 2024, 38(10), 1. 13 Yu J N. Material radiation effects, Chemical Industry Press, China, 2007 (in Chinese). 郁金南. 材料辐照效应, 化学工业出版社, 2007. 14 Yang S B, Yang Z B, Wang H, et al. Nonferrous Metals Science and Engineering, 2017, 8(2), 24(in Chinese). 杨苏冰, 杨占兵, 王会, 等. 有色金属科学与工程, 2017, 8(2), 24. 15 Wan F R. Irradiation damage of metal materials, Science Press, China, 1993 (in Chinese). 万发荣. 金属材料的辐照损伤, 科学出版社, 1993. 16 Xu C, Chen W Y, Zhang X, et al. Journal of Nuclear Materials, 2018, 507(15), 188. 17 Liu W X, et al. Electron microanalysis of material structures, Tianjin University Press, China, 1989(in Chinese). 刘文西, 等. 材料结构电子显微分析, 天津大学出版社, 1989. 18 Li F G, Lei Y C, Li T Q, et al. Materials Reports, 2020, 34(4), 4098 (in Chinese). 李福贵, 雷玉成, 李天庆, 等. 材料导报, 2020, 34(4), 4098. 19 Li W M. Study on precipitation and growth behavior of MX phase in 15-15Ti austenitic stainless steel. Master's Thesis, Northeastern University, 2022 (in Chinese). 厉文墨. 15-15Ti奥氏体不锈钢中MX相析出与长大行为研究. 硕士学位论文, 东北大学, 2022. 20 Was G S. Fundamentals of radiation materials science:metals and alloys springer, 2016. 21 Han W Z, Demkowicz M J, Fu E G, et al. Acta Materialia, 2012, 60(18), 6341. 22 Gao J, Liu Z J, Wan F R. Acta Metallurgica Sinica (English Letters), 2016, 29, 72. 23 Fan C, Li Q, Ding J, et al. Acta Materialia, 2019, 177, 107. 24 Shao L, Wei C C, Gigax J, et al. Journal of Materials, 2014, 453, 176. 25 Garner F A, Toloczko M B, Sencer B H. Journal of Nuclear Materials, 2000, 276(1-3), 123. 26 Getto E, Jiao Z, Monterrosa A M, et al. Journal of Nuclear Materials, 2015, 462, 458. 27 Fu C L, Li J J, Bai J J, et al. Journal of Nuclear Materials, 2021, 550, 152948. 28 Wen P, Tonks M R, Phillpot S R, et al. Computational Materials Science, 2022, 209, 111392.