Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010245-6    https://doi.org/10.11896/cldb.24010245
  金属与金属基复合材料 |
15-15Ti奥氏体不锈钢中D、He、Ne离子辐照损伤的TEM表征
安瞻1, 徐驰2,*, 龚翱翔1, 佟振峰1,*
1 华北电力大学核科学与工程学院,北京 102206
2 北京师范大学核科学与技术学院,射线束技术教育部重点实验室,北京 100875
TEM Characterization of D, He, Ne Ion Irradiation Damage of 15-15Ti Austenitic Stainless Steel
AN Zhan1, XU Chi2,*, GONG Aoxiang1, TONG Zhenfeng1,*
1 School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
2 Key Laboratory of Beam Technology of the Ministry of Education, School of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
下载:  全 文 ( PDF ) ( 12819KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 15-15Ti奥氏体不锈钢因优异的力学性能、高温稳定性能、耐腐蚀性能和抗辐照性能而作为商用快堆包壳材料的候选材料之一。目前国内对15-15Ti奥氏体不锈钢的辐照损伤研究仍然较少,且辐照实验多采用较低的辐照剂量,与商用快堆内极高的辐照剂量所对应的实验数据更为欠缺。为探究商用快堆内极高的辐照剂量对15-15Ti奥氏体不锈钢辐照损伤的影响,给15-15Ti奥氏体不锈钢的抗辐照性能研究提供实验数据补充,选用D+、He+以及Ne+对15-15Ti在较高与较低的辐照剂量下进行离子辐照实验,对辐照后样品的微观结构进行了TEM表征,统计分析了位错环、气泡等辐照缺陷的尺寸与密度。结果表明,随着辐照剂量的增加,位错环与空洞的尺寸明显增大,且数密度降低;在晶界与析出物边界附近有明显的空洞聚集现象;纳米压痕实验显示样品有明显的辐照硬化现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安瞻
徐驰
龚翱翔
佟振峰
关键词:  15-15Ti奥氏体不锈钢  透射电子显微镜  纳米压痕  辐照损伤    
Abstract: 15-15Ti austenitic stainless steel is one of the candidate materials for commercial fast reactor cladding materials due to its excellent mechanical properties, high temperature stability, corrosion resistance and radiation resistance. At present, there are still few studies on the irradiation damage of 15-15Ti austenitic stainless steel, and the irradiation experiment mostly uses a lower irradiation dose, the experimental data corresponding to the extremely high irradiation dose in the commercial fast reactor are even more lacking. In order to explore the effect of extremely high irradiation dose on the irradiation damage of 15-15Ti austenitic stainless steel in commercial fast reactor, the experimental data supplement for the irradiation resistance of 15-15Ti austenitic stainless steel was provided, the samples were irradiated with D+, He+ and Ne+ by using transmission electron microscopy and nano-indentation techniques. The microstructure of irradiated samples was characterized by TEM, and the size and density of irradiation defects such as dislocation loops and bubbles were statistically analyzed. The results show that with the increase of irradiation dose, the size of dislocation loops and voids increases obviously, and the number density decreases. There is obvious void accumulation near the boundary between grain boundary and precipitate, and obvious irradiation hardening phenomenon.
Key words:  15-15Ti austenitic stainless steel    transmission electron microscopy    nano-indentation    irradiation damage
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TL341  
基金资助: 国家自然科学基金(12105017)
通讯作者:  *徐驰,博士,北京师范大学核科学与技术学院讲师、硕士研究生导师。主要研究方向为金属材料辐照损伤、核材料腐蚀机理以及微弧氧化技术的核材料应用。
佟振峰,博士,华北电力大学核科学与工程学院教授、博士研究生导师。主要从事新型核材料开发、材料辐照损伤表征与评价、反应堆关键部件材料应用性能与老化评估、材料辐照损伤计算模拟与机器学习等方面的研究。xuchi@bnu.edu.cn;zhenfeng_tong@ncepu.edu.cn   
作者简介:  安瞻,华北电力大学核科学与工程学院硕士研究生,在佟振峰教授的指导下进行研究。目前主要研究领域为15-15Ti奥氏体不锈钢的辐照损伤。
引用本文:    
安瞻, 徐驰, 龚翱翔, 佟振峰. 15-15Ti奥氏体不锈钢中D、He、Ne离子辐照损伤的TEM表征[J]. 材料导报, 2025, 39(6): 24010245-6.
AN Zhan, XU Chi, GONG Aoxiang, TONG Zhenfeng. TEM Characterization of D, He, Ne Ion Irradiation Damage of 15-15Ti Austenitic Stainless Steel. Materials Reports, 2025, 39(6): 24010245-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010245  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010245
1 Chen P, Zhang R Q, Duan Z G, et al. China Basic Science, 2021, 23(4), 1 (in Chinese).
陈平, 张瑞谦, 段振刚, 等. 中国基础科学, 2021, 23(4), 1.
2 Li L Q, Yang Z B. Materials Reports, 2021, 35(5), 5122 (in Chinese).
李连奇, 杨占兵. 材料导报, 2021, 35(5), 5122.
3 Hao Y C, Zhao M L, Luo L M. Materials for Mechanical Engineering, 2018, 42(7), 1 (in Chinese).
郝予琛, 赵美玲, 罗来马. 机械工程材料, 2018, 42(7), 1.
4 Xia S, Zhou B X. Journal of Shanghai University(Natural Science Edition), 2015, 21(2), 152 (in Chinese).
夏爽, 周邦新. 上海大学学报(自然科学版), 2015, 21(2), 152.
5 Fan X Y. Science and Technology Vision, 2017(29), 82 (in Chinese).
樊翔宇. 科技视界, 2017(29), 82.
6 Wu L, Xing C J, Yao C F, et al. Heat Treatment of Metals, 2016, 41(10), 21 (in Chinese).
吴林, 邢长军, 姚春发, 等. 金属热处理, 2016, 41(10), 21.
7 David C, Panigrahi B K, Balaji S. Journal of Nuclear Materials, 2008, 383(1), 132.
8 Kato T, Takahashi H, Izumiya M. Materials Transactions, JIM, 2007, 32(10), 921.
9 Ding X, Huang C, Li R S. Materials for Mechanical Engineering, 2020, 44(7), 70 (in Chinese).
丁寻, 黄晨, 李荣生. 机械工程材料, 2020, 44(7), 70.
10 Wei J, Luo L, Huang Q Y, et al. Hot Working Technology, DOI:10. 14158/j. cnki. 1001-3814. 20213073 (in Chinese).
卫捷, 罗林, 黄群英, 等. 热加工工艺, DOI:10. 14158/j. cnki. 1001-3814. 20213073.
11 Gao P. Steel Pipe, 2022, 51(1), 13 (in Chinese).
高佩. 钢管, 2022, 51(1), 13.
12 Gong A X, Xu C, An Z, et al. Materials Reports, 2024, 38(10), 1 (in Chinese).
龚翱翔, 徐驰, 安瞻, 等. 材料导报, 2024, 38(10), 1.
13 Yu J N. Material radiation effects, Chemical Industry Press, China, 2007 (in Chinese).
郁金南. 材料辐照效应, 化学工业出版社, 2007.
14 Yang S B, Yang Z B, Wang H, et al. Nonferrous Metals Science and Engineering, 2017, 8(2), 24(in Chinese).
杨苏冰, 杨占兵, 王会, 等. 有色金属科学与工程, 2017, 8(2), 24.
15 Wan F R. Irradiation damage of metal materials, Science Press, China, 1993 (in Chinese).
万发荣. 金属材料的辐照损伤, 科学出版社, 1993.
16 Xu C, Chen W Y, Zhang X, et al. Journal of Nuclear Materials, 2018, 507(15), 188.
17 Liu W X, et al. Electron microanalysis of material structures, Tianjin University Press, China, 1989(in Chinese).
刘文西, 等. 材料结构电子显微分析, 天津大学出版社, 1989.
18 Li F G, Lei Y C, Li T Q, et al. Materials Reports, 2020, 34(4), 4098 (in Chinese).
李福贵, 雷玉成, 李天庆, 等. 材料导报, 2020, 34(4), 4098.
19 Li W M. Study on precipitation and growth behavior of MX phase in 15-15Ti austenitic stainless steel. Master's Thesis, Northeastern University, 2022 (in Chinese).
厉文墨. 15-15Ti奥氏体不锈钢中MX相析出与长大行为研究. 硕士学位论文, 东北大学, 2022.
20 Was G S. Fundamentals of radiation materials science:metals and alloys springer, 2016.
21 Han W Z, Demkowicz M J, Fu E G, et al. Acta Materialia, 2012, 60(18), 6341.
22 Gao J, Liu Z J, Wan F R. Acta Metallurgica Sinica (English Letters), 2016, 29, 72.
23 Fan C, Li Q, Ding J, et al. Acta Materialia, 2019, 177, 107.
24 Shao L, Wei C C, Gigax J, et al. Journal of Materials, 2014, 453, 176.
25 Garner F A, Toloczko M B, Sencer B H. Journal of Nuclear Materials, 2000, 276(1-3), 123.
26 Getto E, Jiao Z, Monterrosa A M, et al. Journal of Nuclear Materials, 2015, 462, 458.
27 Fu C L, Li J J, Bai J J, et al. Journal of Nuclear Materials, 2021, 550, 152948.
28 Wen P, Tonks M R, Phillpot S R, et al. Computational Materials Science, 2022, 209, 111392.
[1] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[2] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[3] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[4] 乔永丰, 雷玉成, 姚奕强, 朱强. 坡口形状对CLAM钢焊缝抗辐照损伤性能的影响[J]. 材料导报, 2024, 38(10): 22100080-8.
[5] 龚翱翔, 徐驰, 安瞻, 佟振峰. 15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征[J]. 材料导报, 2024, 38(10): 23010111-6.
[6] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[7] 任高远, 苏宏久, 王树东. 纳米氧化硅制备的成核过程:Ⅱ.成核阶段的可视化研究[J]. 材料导报, 2022, 36(12): 21040113-5.
[8] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[9] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[10] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[11] 王耀城, 刘定坤, 刘伟, 吕阳, 郑愚. 纳米压痕测试技术在GFRP材料中的应用综述[J]. 材料导报, 2021, 35(19): 19214-19222.
[12] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[13] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[14] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[15] 李越, 李玉龙, 李学文. Q235钢表面TIG焊堆焊铁基非晶涂层的组织与性能[J]. 材料导报, 2020, 34(18): 18135-18138.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed