Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070132-6    https://doi.org/10.11896/cldb.24070132
  无机非金属及其复合材料 |
BFRP约束煤矸石混凝土轴压本构模型研究
夏军武1,2,3,*, 朱致淳1, 林俊东4, 何源1, 于峻1, 柏建彪5
1 中国矿业大学力学与土木工程学院,江苏 徐州 221116
2 江苏省土木工程灾变与智能防控重点实验室,江苏 徐州 221116
3 中国矿业大学深地工程智能建造与健康运维全国重点实验室,江苏 徐州 221116
4 芜湖市住房和城乡建设局排水管理处,安徽 芜湖 241007
5 新疆工程学院矿业工程与地质学院,乌鲁木齐 830023
Study on the Axial Compression Constitutive Model of Coal Gangue Concrete Confined with BFRP
XIA Junwu1,2,3,*, ZHU Zhichun1, LIN Jundong4, HE Yuan1, YU Jun1, BAI Jianbiao5
1 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
2 Jiangsu Key Laboratory of Civil Engineering Disaster Prevention and Intelligent Control, Xuzhou 221116, Jiangsu, China
3 State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining and Technology,Xuzhou 221116,Jiangsu, China
4 Wuhu Housing and Urban Rural Development Bureau Drainage Management Office, Wuhu 241007, Anhui, China
5 School of Mining and Geology, Xinjiang Institute of Engineering, Urumqi 830023, China
下载:  全 文 ( PDF ) ( 8298KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了建立玄武岩纤维增强复合材料( Basalt fiber reinforced polymer,BFRP)约束煤矸石混凝土本构模型,探究了BFRP约束层数与混凝土强度对轴压力学性能和本构关系的影响。结果表明:BFRP约束层越多,其极限抗压强度与极限轴向应变增幅越大; 煤矸石混凝土强度越低,BFRP约束效果越好。试件受BFRP约束程度是影响其本构关系曲线形态的主要因素,针对不同约束类型(强约束和弱约束)提出了BFRP约束煤矸石混凝土的本构模型,模型精度较高,具有较好的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏军武
朱致淳
林俊东
何源
于峻
柏建彪
关键词:  煤矸石混凝土  BFRP  本构模型  轴压力学性能    
Abstract: To establish a constitutive model for coal gangue concrete confined with basalt fiber reinforced polymer (BFRP), experiments were conducted to investigate the influence of the number of BFRP layers and concrete strength on the axial mechanical properties and constitutive relationships. The results show that the more BFRP layers there are, the greater the increase in ultimate compressive strength and ultimate axial strain. Additionally, the lower the strength of the gangue concrete, the better the BFRP confinement effect. The degree of BFRP confinement is found to be the main factor affecting the shape of the constitutive relationship curve. A constitutive model for coal gangue concrete confined with BFRP under different types of confinement (strong confinement and weak confinement) is established, and it is proved to have high accuracy and good applicability by the verified experiment.
Key words:  coal gangue concrete    BFRP    constitutive model    axial mechanical property
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU398  
基金资助: 国家自然科学基金面上项目(52074270); 国家自然科学基金区域重点项目(U23A20598); 新疆维吾尔自治区重点研发计划项目(2022B01051-2)
通讯作者:  夏军武,中国矿业大学力学与土木工程学院教授、博士研究生导师。目前主要从事新型结构和材料、结构抗变形和抗震以及固废资源化利用等方面的研究工作。xiajunwu100@163.com   
引用本文:    
夏军武, 朱致淳, 林俊东, 何源, 于峻, 柏建彪. BFRP约束煤矸石混凝土轴压本构模型研究[J]. 材料导报, 2025, 39(16): 24070132-6.
XIA Junwu, ZHU Zhichun, LIN Jundong, HE Yuan, YU Jun, BAI Jianbiao. Study on the Axial Compression Constitutive Model of Coal Gangue Concrete Confined with BFRP. Materials Reports, 2025, 39(16): 24070132-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070132  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070132
1 Bai G L, Liu H Q, Liu H, et al. Journal of Building Structures, 2023, 44(10), 243(in Chinese).
白国良, 刘瀚卿, 刘辉, 等. 建筑结构学报, 2023, 44(10), 243.
2 Xu E L. Study on basic properties and pore structure of coal gangue pervious concrete. Master's Thesis, China University of Mining and Technology, China, 2022(in Chinese).
徐恩来. 煤矸石透水混凝土的基本性能与孔结构研究. 硕士学位论文, 中国矿业大学, 2022.
3 Zhang L, Liu C J, Chen Y, et al. Mining Safety & Environmental Protection, 2025, 52(1), 160(in Chinese).
张蕾, 刘春江, 陈雅, 等. 矿业安全与环保, 2025, 52(1), 160.
4 Huang X M, Rao J L , Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
5 Yu L L. Study on mechanical properties and durability of FRP-confined coal gangue concrete in goaf. Ph. D. Thesis, China University of Mining and Technology, China, 2023(in Chinese).
郁林利. 采空区FRP约束煤矸石混凝土力学性能与耐久性研究. 博士学位论文, 中国矿业大学, 2023.
6 Zhu J M, Sun B D, Zhang J, et al. China Coal, 2023, 49(1), 44(in Chinese).
朱吉茂, 孙宝东, 张军, 等. 中国煤炭, 2023, 49(1), 44.
7 Liu K, Ma Y D, Hou X K. Coal, 2013, 22(5), 59(in Chinese).
柳凯, 马延栋, 侯小可. 煤, 2013, 22(5), 59.
8 Bai G L, Liu H Q, Zhu K F, et al. China Civil Engineering Journal, 2023, 56(4), 30(in Chinese).
白国良, 刘瀚卿, 朱可凡, 等. 土木工程学报, 2023, 56(4), 30.
9 Trapko T. Materials in Engineering, 2013, 44, 382.
10 Wu H, Wang Y, Yu L, et al. Journal of Composites for Construction, 2009, 13(2), 125.
11 Luca M D, Ferrandiz B S, Balart G R. Journal of Composite Materials, 2015, 49(10), 1211.
12 Zhang H J. Research on the influence of BFRP reinforcement on the bearing capacity of freeze-thawdamaged concrete short columns. Master's Thesis, Hebei University of Architecture, China, 2023(in Chinese).
张宏家. BFRP加固对冻融损伤混凝土短柱承载能力影响研究. 硕士学位论文, 河北建筑工程学院, 2023.
13 Wang Y W. Study on the bias and seismic behavior of BFRP tube reinforced concrete column. Master's Thesis, Northeast Petroleum University, China, 2023(in Chinese).
王钰炜. BFRP管钢筋混凝土柱偏压及抗震性能研究. 硕士学位论文, 东北石油大学, 2023.
14 Duan X M, Xia J W, Yang F Z, et al. Industrial Construction, 2014(3), 114(in Chinese).
段晓牧, 夏军武, 杨风州, 等. 工业建筑, 2014(3), 114.
15 Berthet J F, Ferrier E, Hamelin P. Construction and Building Materials, 2005, 19(3), 223.
16 Suon S, Saleem S, Pimanmas A. Construction and Building Materials, 2019, 195, 85.
17 Zhang N, Zheng C Y, Zhao Z W, et al. Journal of Building Materials, 2021, 24(3), 571(in Chinese).
张霓, 郑晨阳, 赵中伟, 等. 建筑材料学报, 2021, 24(3), 571.
18 Niu J, Feng Y J, Jiang Y J. Plastics Science and Technology, 2009, 37(8), 72(in Chinese).
牛君, 冯永建, 姜亚军. 塑料科技, 2009, 37(8), 72.
19 Wu G, Lyu Z T. Journal of Building Structures, 2003(5), 1(in Chinese).
吴刚, 吕志涛. 建筑结构学报, 2003(5), 1.
20 Wu G, Wu Z S, Lyu Z T. China Civil Engineering Journal, 2006(11), 7(in Chinese).
吴刚, 吴智深, 吕志涛. 土木工程学报, 2006(11), 7.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[3] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[4] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[5] 权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
[6] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[7] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[8] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[11] 朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
[12] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[13] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[14] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed