Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24070041-9    https://doi.org/10.11896/cldb.24070041
  金属与金属基复合材料 |
热带海岛大气环境下Q235钢的腐蚀规律及GM(1,1)模型预测
秦术杰*, 王欣
海南大学土木建筑工程学院,海口 570228
Corrosion Law and GM(1,1) Model-based Prediction of Q235 Steel in Tropical Island Atmospheric Environment
QIN Shujie*, WANG Xin
School of Civil Engineering and Architecture, Hainan University, Haikou 570228, China
下载:  全 文 ( PDF ) ( 29251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Q235钢在我国海南岛及南海群岛应用时的腐蚀问题不容忽视。通过自然暴露试验及喷洒水雾、质量分数为3.1%和5%盐雾的加速试验,采用宏观形貌观察法、SEM、EDS、XRD、腐蚀失重法及拉伸试验等分析手段,对Q235钢在热带海岛大气环境下的腐蚀规律进行研究,并基于GM(1,1)模型对腐蚀钢材的力学性能进行预测和分析。结果表明:Q235钢腐蚀锈层的颜色和结构形式在不同工况下存在差异,水雾会加剧锈层与基体界面处的裂纹扩展,而盐雾会破坏锈层的致密性并加速锈层开裂。Q235钢腐蚀深度与腐蚀时间关系符合幂函数规律,盐雾对腐蚀质量损失的加速效果高于水雾。腐蚀12个月后,Q235钢的屈服强度、抗拉强度和断后伸长率在不同工况下的退化程度由低至高依次为:自然暴露<水雾<盐雾。GM(1,1)模型对腐蚀钢材的力学性能退化规律具有较好的预测精度,所有工况下的各力学性能的退化速率均随时间延长逐渐趋于平缓;自然暴露工况下的屈服强度、抗拉强度和断后伸长率的退化程度和速率均显著低于其他工况,而弹性模量在自然暴露和水雾工况下随时间的退化程度比较接近,但也显著低于盐雾工况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦术杰
王欣
关键词:  Q235钢  热带海岛大气环境  腐蚀形貌  腐蚀失重  力学性能退化  预测模型    
Abstract: The corrosion of Q235 steel is a problem that can not be ignored in tropical island areas such as Hainan Island and the South China Sea Islands. Through natural exposure test, accelerated tests by spraying water mist and salt mist with mass fractions of 3.1% and 5%, adopting the methods including macroscopic morphology observation, SEM, EDS, XRD, corrosion weight loss and tensile tests, the corrosion law of Q235 steel in tropical island atmospheric environment was studied, and the mechanical properties of corroded steel were analyzed and predicted based on the GM(1, 1) model. The results show that the color and structural form of corrosion rust layer of Q235 steel vary for those under different conditions. Water mist exacerbates the crack expansion at the interface between the rust layer and the substrate, while salt mist destroys the compactness of the rust layer and accelerated its cracking progress. The law between corrosion depth of Q235 steel and time follows a power function. Salt mist has a greater accelerating effect on corrosion mass loss than water mist. After corrosion for 12 months, the degradation degrees of mechanical properties including yield strength, tensile strength and elongation after fracture of Q235 steel ranges from low to high are under natural exposure, water mist and salt mist conditions sequentially. The GM(1, 1) model exhibits a well accuracy in predicting the degradation of mechanical properties of corroded steel. The degradation rates of mechanical properties decrease gradually and level off with time under all test conditions. The degradation degree and rate of yield strength, tensile strength and elongation after fracture under natural exposure condition are significantly lower than those under other conditions. The degradation degree of elastic modulus with time under natural exposure and water mist conditions is similar, while they are significantly lower than those under salt spray conditions.
Key words:  Q235 steel    tropical island atmospheric environment    corrosion morphology    corrosion weight loss    mechanical property degradation    prediction model
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU5111.3  
基金资助: 国家自然科学基金(52208312);海南省自然科学基金(522RC613);国家重点研发计划(2019YFD1101003)
通讯作者:  秦术杰,博士,海南大学土木建筑工程学院副教授、博士研究生导师。目前主要从事建筑材料腐蚀与结构安全评估等方面的研究工作。qinshujie@hainanu.edu.cn   
引用本文:    
秦术杰, 王欣. 热带海岛大气环境下Q235钢的腐蚀规律及GM(1,1)模型预测[J]. 材料导报, 2025, 39(16): 24070041-9.
QIN Shujie, WANG Xin. Corrosion Law and GM(1,1) Model-based Prediction of Q235 Steel in Tropical Island Atmospheric Environment. Materials Reports, 2025, 39(16): 24070041-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070041  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24070041
1 Wang H, Qiu F, Qian H, et al. Process Safety and Environmental Protection, 2022, 165, 295.
2 Pei Z B. The action law and mechanism of the main influencing factors to atmospheric corrosion of carbon steel based on big data technology. Ph. D. Thesis, University of Science and Technology Beijing, China, 2021(in Chinese).
裴梓博. 碳钢大气环境腐蚀大数据研究及主要影响因素作用规律. 博士学位论文. 北京科技大学, 2021.
3 Hou B R. The cost of corrosion in China, Science Press, China, 2017(in Chinese).
侯保荣. 中国腐蚀成本, 科学出版社, 2017.
4 Jing W T, Wu M. Materials Reports, 2020, 34(24), 24138(in Chinese).
荆婉婷, 吴明. 材料导报, 2020, 34(24), 24138.
5 Kim S, Kim G, Kim C K, et al. Nuclear Engineering and Technology, 2024, 56(1), 317.
6 Chen T C, Xiang J H, Jiang L F, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(4), 560(in Chinese).
陈土春, 向军淮, 江龙发, 等. 中国腐蚀与防护学报, 2021, 41(4), 560.
7 Xue J J, Liu J Y, Zhou J K, et al. Journal of North China Electric Power University (Natural Science Edition), 2022, 49(6), 109(in Chinese).
薛俊杰, 刘静逸, 卓建坤, 等. 华北电力大学学报(自然科学版), 2022, 49(6), 109.
8 Cao C, Zheng S S, Hu W B, et al. Materials Reports, 2020, 34(11), 11162(in Chinese).
曹琛, 郑山锁, 胡卫兵, 等. 材料导报, 2020, 34(11), 11162.
9 Wang Z G, Hai C, Jiang J, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6), 871(in Chinese).
王志高, 海潮, 姜杰, 等. 中国腐蚀与防护学报, 2021, 41(6), 871.
10 Liu Y W. Corrosion behavior and mechanism of carbon steel at Nansha Islands Marine atmospheric environment. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
刘雨薇. 碳钢在南沙大气环境中的腐蚀行为与机理研究. 博士学位论文, 中国科学技术大学, 2020.
11 Rosa V, Raquel A, Carolina G, et al. Materials and Corrosion, 2019, 70, 1151.
12 Liang C F, Hou W T. Journal of Chinese Society for Corrosion and Protection, 2005(1), 2(in Chinese).
梁彩凤, 侯文泰. 中国腐蚀与防护学报, 2005(1), 2.
13 Li Q, Liu K, Zhao T L. Acta Metallurgica Sinica, 2023, 59(6), 829(in Chinese).
李谦, 刘凯, 赵天亮. 金属学报, 2023, 59(6), 829.
14 Li X H, Cao G W, Guo M X, et al. Acta Metallurgica Sinica, 2023, 59(7), 884(in Chinese).
李小涵, 曹公望, 郭明晓, 等. 金属学报, 2023, 59(7), 884.
15 Garbatov Y, Saad-Eldeen S, Soares C G, et al. Corrosion Engineering, Science and Technology, 2018, 54(2), 154
16 Paik J, Lee J, Ko M. Thin-Walled Structures, 2004, 42, 1161.
17 Zhang Z X, Xu S H, Nie B, et al. Thin-Walled Structures, 2020, 151, 17.
18 Nie B, Xu S H, Zhang Z X, et al. Journal of Constructional Steel Research, 2020, 169, 106026.
19 Xu S H, Gu R J, Nie B, et al. Journal of Harbin Institute of Technology, 2021, 53(4), 177(in Chinese).
徐善华, 古仁俊, 聂彪, 等. 哈尔滨工业大学学报, 2021, 53(4), 177.
20 Yao Y, Liu G J, Li S Z, et al. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5), 983(in Chinese).
姚勇, 刘国军, 黎石竹, 等. 中国腐蚀与防护学报, 2023, 43(5), 983.
21 Xie J X, Su Y J, Xue D Z, et al. Acta Metallurgica Sinica 2021, 57(11), 1343(in Chinese).
谢建新, 宿彦京, 薛德祯, 等. 金属学报, 2021, 57(11), 1343
22 Fang S F, Wang M P, Qi W H, et al. Computational Material Science, 2008, 44, 647.
23 Yin W K, Li F, Zhao W B. Water Resources and Power, 2019, 37(4), 163(in Chinese).
尹文阔, 李峰, 赵文彬. 水电能源科学, 2019, 37(4), 163.
24 Xie Z, Quan B. Materials Research Express, 2020, 7(10), 106510.
25 Wang X. Frattura ed Integrità Strutturale, 2018, 12(45), 100.
26 Yan S T, Jin Y, Xu F F, et al. Corrosion Science and Protection Technology, 2019, 31(5), 467(in Chinese).
闫松涛, 金莹, 许斐范, 等. 腐蚀科学与防护技术, 2019, 31(5), 467.
27 Alcántara J, Fuente D, Chico B, et al. Materials, 2017, 10(4), 406.
28 Gao Z X, Niu J W, Dong G B, et al. International Journal of Electrochemical Science, 2024, 19(8), 100707.
29 Ding K K, Guo W M, Qiu R, et al. Journal of Materials Engineering and Performance, 2018, 27, 4489.
30 Cheng D Y, Zhao J B, Liu B, et al. Journal of Chinese Society for Corrosion and Protection, 2019, 39(1), 29(in Chinese).
程多云, 赵晋斌, 刘波, 等. 中国腐蚀与防护学报, 2019, 39(1), 29.
31 Lei L, Xu J W. Total Corrosion Control, 2019, 33(8), 71 (in Chinese).
雷林, 徐静雯. 全面腐蚀控制, 2019, 33(8), 71.
32 Liu S F. Grey system theory and its application (9th Edition), Science Press, China, 2021, pp. 238(in Chinese).
刘思峰. 灰色系统理论及其应用(第九版) , 科学出版社, 2021, pp. 238.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[4] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[5] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[6] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[7] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[8] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[9] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[10] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[11] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[12] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[13] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[14] 魏建峰, 宋铁鹏, 王国承. 钢凝固过程元素偏析和夹杂物生成预报模型研究进展[J]. 材料导报, 2021, 35(Z1): 454-461.
[15] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed