Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050230-5    https://doi.org/10.11896/cldb.24050230
  金属与金属基复合材料 |
一步法真空蒸馏制备4N5高纯锰研究
孙院军1, 赵永喆2, 杨双平2,*, 丁向东1, 孙军1
1 西安交通大学材料科学与工程学院,西安 710049
2 西安建筑科技大学冶金工程学院,西安 710055
Preparation of 4N5 High Purity Manganese by One-step Vacuum Distillation
SUN Yuanjun1, ZHAO Yongzhe2, YANG Shuangping2,*, DING Xiangdong1, SUN Jun1
1 College of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 College of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 11859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着高新领域的发展,金属锰高纯化成为行业发展的必然趋势。本工作以电解锰为原料,通过自主研发的高效蒸馏炉,结合分区冷凝,采用在冷凝区设置恒温冷凝段的方式,延长主金属冷凝区长度,达到提高金属收得率的目的,并一步制备出纯度4N5以上的高纯锰。通过对电解锰真空蒸馏理论进行分析,并研究了不同蒸馏温度、时间对挥发率和恒温冷凝段温度(冷凝温度)对金属收得率的影响,同时利用电感耦合等离子体质谱仪(ICP-MS)检测不同蒸馏温度下冷凝锰中的杂质含量。研究结果表明:在选定的蒸馏温度下主金属Mn易与杂质金属分离,但温度越高分离能力越弱。随蒸馏温度的升高和保温时间的延长,挥发率均呈上升趋势。设置主金属恒温冷凝段可大幅度提升金属收得率,随冷凝温度的升高,金属收得率呈先升后降趋势。随蒸馏温度的上升,冷凝锰中Cd、K、Na、Zn的含量基本不变,Mg、Ca、Pb、Cu、Cr、Ni、Fe、Co的含量整体呈增大趋势。综合考虑,在体系压强10-3~10-2 Pa、冷凝温度1 100 ℃、保温时间90 min、蒸馏温度1 400 ℃条件下,可得纯度4N5的高纯锰,此时挥发率为86.94%,收得率可达94.32%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙院军
赵永喆
杨双平
丁向东
孙军
关键词:  高纯锰  真空蒸馏  电解锰  一步法  分区冷凝    
Abstract: With the development of high-tech fields, high purification of metal manganese has become an inevitable trend in the development of the industry. In this study, using electrolytic manganese as raw material, through self-developed high-efficiency distillation furnace, the high-purity manganese with a purity of more than 4N5 was prepared in one step combined with partition condensation, the length of the main metal condensation zone was extended by setting a constant temperature condensation section in the condensation zone to achieve the purpose of improving the metal yield. The theory of vacuum distillation of electrolytic manganese was analyzed, and the effects of different distillation temperatures and times on the volatilization rate and the temperature of the constant temperature condensation section (condensation temperature) on the metal yield were studied. At the same time, the impurity content in the condensed manganese at different distillation temperatures was detected by inductively coupled plasma mass spectrometry (ICP-MS). The results show that the main metal Mn is easy to separate from the impurity metal at the selected distillation temperature, but the higher the temperature, the weaker the separation ability. With the increase of distillation temperature and holding time, the volatilization rate increases. Setting the main metal constant temperature condensation section can greatly improve the me-tal yield, with the increase of condensation temperature, the metal yield increases first and then decreases. With the increase of distillation temperature, the contents of Cd, K, Na, and Zn in condensed manganese are almost unchanged, while the contents of Mg, Ca, Pb, Cu, Cr, Ni, Fe, and Co increased with the increase of distillation temperature. Considering comprehensively, high-purity manganese with the purity of 4N5 can be obtained under a system pressure of 10-3—10-2 Pa, a condensation temperature of 1 100 ℃, a holding time of 90 min, and a distillation temperature of 1 400 ℃. In this instance, the volatilization rate is 86.94%, and the yield can reach 94.32%.
Key words:  high purity manganese    vacuum distillation    electrolytic manganese    one-step method    partition condensation
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TF819.2  
基金资助: 陕西省重点研发计划项目(2020ZDZX04-02-01HZ)
通讯作者:  *杨双平,博士,西安建筑科技大学冶金工程学院教授、博士研究生导师。目前主要从事炼铁方面的研究工作。yang_sping@163.com   
作者简介:  孙院军,博士,西安交通大学材料科学与工程学院教授、博士研究生导师。目前主要从事钼合金、难熔合金方面的研究工作。
引用本文:    
孙院军, 赵永喆, 杨双平, 丁向东, 孙军. 一步法真空蒸馏制备4N5高纯锰研究[J]. 材料导报, 2025, 39(12): 24050230-5.
SUN Yuanjun, ZHAO Yongzhe, YANG Shuangping, DING Xiangdong, SUN Jun. Preparation of 4N5 High Purity Manganese by One-step Vacuum Distillation. Materials Reports, 2025, 39(12): 24050230-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050230  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050230
1 Guan C, He J J, Zeng H, et al. Chinese Journal of Rare Metals, 2017, 41(2), 120 (in Chinese).
关冲, 何金江, 曾浩, 等. 稀有金属, 2017, 41(2), 120.
2 Lee J H, Black R, Popov G, et al. Energy & Environmental Science:EES, 2012, 5(11), 9558.
3 Du J, Liu X B, Liu Z H, et al. China’s Manganese Industry, 2008(2), 15 (in Chinese).
杜军, 刘晓波, 刘作华, 等. 中国锰业, 2008(2), 15.
4 Jin X Z, Yang Z P, Cheng Z B, et al. China’s Manganese Industry, 2006(1), 28 (in Chinese).
靳晓珠, 杨仲平, 陈祝炳, 等. 中国锰业, 2006(1), 28.
5 Liu B, Zhang Y, Lu M, et al. Minerals Engineering, 2019, 131, 286.
6 Dai E B. China’s Manganese Industry, 2001(2), 9 (in Chinese).
戴恩斌. 中国锰业, 2001(2), 9.
7 Chen Q, Yao Y, Li X, et al. Journal of Water Process Engineering, 2018, 26, 289.
8 Zhang W, Cheng C. Hydrometallurgy, 2007, 89, 160.
9 Goher M E, Hassan A M, Moniem I A A, et al. Egyptian Journal of Aquatic Research, 2015, 41(2), 155.
10 Khobragade M U, Pal A. Journal of Environmental Chemical Engineering, 2014, 2(4), 2295.
11 Budinova T, Savova D, B. Tsyntsarski, et al. Applied Surface Science, 2008, 255(8), 4650.
12 Albuquerque C F, Luna-Finkler C L, Rufino R D, et al. International Review of Chemical Engineering Rapid Communicati, 2012, 4(2), 156.
13 Masindi V, Osman M S, Shingwenyana R. Journal of Environmental Chemical Engineering, 2019, 7(3), 103082.
14 Kononova O N, Bryuzgina G L, Apchitaeva O V, et al. Arabian Journal of Chemistry, 2019, 12(8), 2713.
15 Zhao J, Cao J R, Wang W H, et al. Technology of Water Treatment, 2020, 46(5), 55 (in Chinese).
赵瑾, 曹军瑞, 王文华, 等. 水处理技术, 2020, 46(5), 55.
16 Yuan T, Xiaopan Z, Tao Q, et al. Materials Research Express, 2021, 8(5), 056506.
17 Li Q, Hu Z F, Li Z Q, et al. Nonferrous Metals, 2014, 4(6), 21 (in Chinese).
李卿, 胡志方, 李忠岐, 等. 有色金属工程, 2014, 4(6), 21.
18 Dong L, Yang T, Bin Y, et al. Vacuum, 2021, 192, 110464.
19 Wang L, Liu D C, Yang B, et al. Chinese Journal of Vacuum Science and Technology, 2010, 30(3), 283 (in Chinese).
王林, 刘大春, 杨斌, 等. 真空科学与技术学报, 2010, 30(3), 283.
20 Liu D C, Yang B, Wang F, et al. Physics Procedia, 2012, 32, 363.
21 Prasad D S, Munirathnam N R, Rao J V, et al. Materials Letters, 2005, 59(16), 2035.
22 Ali S T, Prasad D S, Munirathnam N R, et al. Separation and Purification Technology, 2004, 43(3), 263.
23 Cheng Z Y, Long J P, Yang W Y, et al. Guangzhou Chemical Industry, 2021, 49(5), 54 (in Chinese).
程籽毅, 龙剑平, 杨武勇, 等. 广州化工, 2021, 49(5), 54.
24 Ali S T, Rao J V, Varma K S, et al. Bulletin of Materials Science, 2002, 25(6), 479.
25 Ali S T, Munirathnam N R, Sudheer C, et al. Materials Letters, 2003, 58(10), 1638.
26 TanH L, Xiong H, Yang B, et al. Chinese Journal of Rare Metals, 2016, 40(5), 515 (in Chinese).
闫华龙, 熊恒, 杨斌, 等. 稀有金属, 2016, 40(5), 515.
27 Xu Z P, Jia L L, He Z Q, et al. Transactions of Nonferrous Metals Society of China, 2024, 34(5), 1634.
28 姚力军, 郭廷宏, 潘杰, 等. 中国专利, CN202111161334. 3, 2022.
[1] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[2] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[3] 叶东东, 徐子芳, 赵怡梵, 俞欣欣, 傅宇豪. 电解锰渣陶粒共烧结温度影响机理研究[J]. 材料导报, 2022, 36(11): 21120242-6.
[4] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[5] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[6] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed