Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22110267-5    https://doi.org/10.11896/cldb.22110267
  金属与金属基复合材料 |
CFRP/TC4激光连接工艺及接头组织和性能
龚浩1, 程东海1,*, 刘钊泽1, 李文杰1, 邹鹏远2
1 南昌航空大学航空制造工程学院,南昌 330063
2 南昌航空大学科技学院,江西 九江 332020
Study on Laser Bonding Technology and Microstructure and Properties of CFRP/TC4 Joint
GONG Hao1, CHENG Donghai1,*, LIU Zhaoze1, LI Wenjie1, ZOU Pengyuan2
1 College of Aeronautical Manufacturing Engineering, Nanchang Aviation University, Nanchang 330063, China
2 College of Science and Technology, Nanchang Aviation University, Jiujiang 332020, Jiangxi, China
下载:  全 文 ( PDF ) ( 17817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对碳纤维增强树脂基复合材料(CFRP)和TC4钛合金的激光焊接开展研究,分析了工艺参数对接头力学性能的影响,并进行接头断面分析;观察了接头微观结构及界面键合特征,分析了接头连接机理。结果表明:CFRP和TC4在激光的作用下能够获得良好的接头,在试验工艺范围内,当激光功率为650 W、焊接速度为10 mm/s时,接头剪切力最大值为926 N。接头通过TC4以及树脂的相互渗透能形成机械互锁效应,接头断裂模式主要为粘结断裂和内聚断裂,通过分析接头微观结构发现CFRP受热分解形成气泡,同时接头界面发生了元素扩散并在界面发生反应生成TiO2、CTi0.42V1.58组织,同时出现-OH键,从而构成稳定的接头组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚浩
程东海
刘钊泽
李文杰
邹鹏远
关键词:  CFRP  激光焊接  组织结构  机械互锁效应    
Abstract: Laser welding of carbon fiber reinforced polymer composite (CFRP) and TC4 titanium alloy was studied. The influence of technological parameters on the mechanical properties of the joint was analyzed, and the cross section of the joint was analyzed. The microstructure and interface bonding characteristics of the joint were observed, and the joint mechanism was analyzed. The results showed that, under the action of laser, the joint of CFRP and TC4 was formed. Within a certain range of technological parameters, when the laser power is 650 W and the welding speed is 10 mm/s, the joint shear force is up to 926 N. The joint can form mechanical interlocking effect through mutual penetration of TC4 and resin. The fracture modes of the joint are mainly bond fracture and cohesive fracture. By analyzing the microstructure of the joint, it is found that the CFRP material is decomposed by heat and form bubbles. At the same time, the element diffusion occurs at the interface of the joint and the reaction occurs when the TiO2, CTi0.42V1.58 and -OH bond are formed, and a stable joint structure is formed.
Key words:  CFRP    laser welding    microstructures    mechanical interlocking effect
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TG442  
基金资助: 江西省自然科学基金(S2021ZRMSL1064);南昌航空大学科技学院科技项目(KYKJ2102)
通讯作者:  程东海,南昌航空大学航空制造工程学院副教授、硕士研究生导师。2000年9月至2010年1月在北京科技大学获得材料成型及控制工程专业工学学士学位和材料加工工程专业工学博士学位。主持国家自然科学基金、航空基金、省教育厅基金、横向课题若干项,在国内外重要期刊发表学术论文60余篇。主要从事异种材料焊接、高能束焊接、钎焊等方向的研究工作。70269@nchu.edu.com   
作者简介:  龚浩,南昌航空大学航空制造工程学院硕士研究生,主要研究方向为异种金属材料焊接。
引用本文:    
龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
GONG Hao, CHENG Donghai, LIU Zhaoze, LI Wenjie, ZOU Pengyuan. Study on Laser Bonding Technology and Microstructure and Properties of CFRP/TC4 Joint. Materials Reports, 2024, 38(7): 22110267-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22110267  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22110267
1 Chen Y J, Yue T M, Guo Z N. Materials & Design, 2016, 110, 775.
2 Jung K W, Kawahito Y, Takahashi M, et al. Journal of Laser Applications, 2013, 25, 032003.
3 Jung K W, Kawahito Y, Takahashi M, et al. Materials & Design, 2013, 47, 179.
4 Pramanik A, Basak A K, Dong Y, et al. Applied Science and Manufacturing, 2017, 101, 1.
5 Zhang Z, Shan J, Tan X, et al. International Journal of Advanced Manufacturing Technology, 2017, 90, 1.
6 Kashaev N, Ventzke V, Riekehr S, et al. Materials & Design, 2015, 81, 73.
7 Shan Z D, Fan C Z, Sun Q L, et al. China Mechanical Engineering, 2020, 31(2), 221 (in Chinese).
单忠德, 范聪泽, 孙启利, 等. 中国机械工程, 2020, 31(2), 221.
8 Jia S H, Jia J P, Jiao J K, et al. Chinese Journal of Lasers, 2019, 46(7), 109 (in Chinese).
贾少辉, 贾剑平, 焦俊科, 等. 中国激光, 2019, 46(7), 109.
9 Zhang D W, Zhang Q, Fan X G, et al. Rare Metal Materials and Engineering, 2018, 47, 3686.
10 Lambiase F, Genna S. Optics & Laser Technology, 2018, 107, 80.
11 Su J, Tan C, Wu Z, et al. Optics & Laser Technology, 2020, 90, 124.
12 Tan C, Su J, Zhu B, et al. Optics & Laser Technology, 2020, 90, 129.
13 Tan X, Zhang J, Shan J, et al. Engineering, 2015, 70, 35.
14 Zhang Z, Shan J G, Tan X H, et al. International Journal of Adhesion and Adhesives, 2016, 70, 142.
15 Su X, Tao W, Chen Y, et al. Materials Letters, 2017, 195, 228.
16 Zou P, Zhang H, Lei M, et al. Materials Letters, 2022, 325, 132707.
17 Tan C, Su J, Liu Y, et al. Engineering, 2022, 82, 239.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 彭进, 许红巧, 王星星, 龙伟民, 张永振, 于晓凯. 激光深熔焊匙孔及焊接飞溅行为的数值模拟[J]. 材料导报, 2025, 39(3): 22030166-5.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[5] 周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
[6] 李昂, 曾一达, 李智勇, 贺荣, 郭正华, 陈玉华, 江一, 杨子睿. 双相钢与铝合金异种金属激光焊接技术研究进展[J]. 材料导报, 2024, 38(22): 23090075-9.
[7] 王俊, 相泽辉, 牛建刚, 许文明. CFRP条带和混凝土帆布联合加固混凝土短柱声发射性能研究[J]. 材料导报, 2024, 38(14): 22100117-8.
[8] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[9] 陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
[10] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[11] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[12] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[13] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[14] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[15] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed