Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22100174-6    https://doi.org/10.11896/cldb.22100174
  金属与金属基复合材料 |
激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能
董颖辉1,2, 陈飞寰3, 蔡召兵1,2,3,*, 林广沛1, 卢冰文4,*, 张坡1,3, 古乐1,2,3
1 武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081
2 武汉科技大学精密制造研究院,武汉 430081
3 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081
4 广东省科学院新材料研究所,广州 510651
Fretting Wear Properties of Laser-cladded MoNbTaVW Refractory High-entropy Alloy Coatings
DONG Yinghui1,2, CHEN Feihuan3, CAI Zhaobing1,2,3,*, LIN Guangpei1, LU Bingwen4,*, ZHANG Po1,3, GU Le1,2,3
1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
3 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
4 Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
下载:  全 文 ( PDF ) ( 65285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了采用激光熔覆技术制备的MoNbTaVW难熔高熵合金涂层在不同载荷(10 N、20 N、30 N)、不同微动磨损幅值(50 μm、150 μm、250 μm)、不同循环次数(5 000、10 000、15 000)下的微动磨损性能及微动磨损机制。结果表明:所制备的MoNbTaVW难熔高熵合金涂层由Fe7Ta3型HCP固溶体相、FCC固溶体相及(Fe,Ni)基体相组成,其中FCC相为未熔的高熵合金粉末。根据正交实验极差分析可知,微动磨损幅值对磨损体积的影响最大,微动磨损载荷对磨损体积的影响次之,微动磨损循环次数对磨损体积的影响最小,其中MoNbTaVW难熔高熵合金涂层在15 000次、20 N、250 μm微动磨损条件下的磨损体积达到最大值;微动磨损载荷对摩擦系数的影响最大,微动磨损幅值对摩擦系数的影响次之,微动磨损循环次数对摩擦系数的影响最小,其中MoNbTaVW难熔高熵合金涂层在10 000次、30 N、150 μm微动磨损条件下的摩擦系数达到最大值。MoNbTaVW难熔高熵合金涂层的微动磨损机制主要为氧化磨损和黏着磨损,磨损产生的磨损碎片主要为Ta、W的氧化物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董颖辉
陈飞寰
蔡召兵
林广沛
卢冰文
张坡
古乐
关键词:  难熔高熵合金  微动磨损  摩擦学性能  正交实验    
Abstract: The fretting wear properties and fretting wear mechanism of MoNbTaVW refractory high-entropy alloy coatings prepared by laser cladding were studied under different loads (10 N, 20 N, 30 N), different fretting amplitances (50 μm, 150 μm, 250 μm) and different cycles (5 000, 10 000, 15 000). The results show that the prepared MoNbTaVW refractory high-entropy alloy coating is composed of Fe7Ta3-type HCP solid solution phase, FCC solid solution phase and (Fe, Ni) matrix phase, where the FCC phase is unmelted high-entropy alloy powder. According to the range analysis of orthogonal test, the effect of fretting amplitude on the wear volume is the largest, followed by the effect of load, and the effect of cycle number on the wear volume is the least. The wear volume of MoNbTaVW refractory high-entropy alloy coating reaches the maximum under the fretting wear conditions of 15 000 times, 20 N and 250 μm. The effect of load on the friction coefficient is the largest, followed by the amplitude of fretting, and the number of cycles has the smallest effect on the friction coefficient. The friction coefficient of MoNbTaVW refractory high-entropy alloy coating reaches the maximum value under the fretting wear conditions of 10 000 times, 30 N and 150 μm. The fretting wear mechanism of MoNbTaVW refractory high-entropy alloy coating is mainly oxidation wear and adhesive wear. The wear debris generated by fretting wear is mainly Ta- and W-oxides.
Key words:  refractory high-entropy alloy    fretting wear    tribology performance    orthogonal test
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51905524;52005113);广东省科学院项目(2022GDASZH-2022010107)
通讯作者:  蔡召兵,武汉科技大学机械自动化学院副教授、硕士研究生导师。2009年9月—2018年3月本硕博毕业于哈尔滨工程大学,2018年4月—2020年6月在中国科学院宁波材料技术与工程研究所从事博士后研究工作。目前以第一作者/通信作者身份发表SCI论文20余篇、EI论文3篇,参与授权国家发明专利10余项。主持国家自然科学基金青年项目、中国博士后面上项目、JPPT项目等。主要研究领域为表面工程与摩擦学。caizhaobing@wust.edu.cn
卢冰文,广东省科学院新材料研究所高级工程师。2019年6月博士毕业于哈尔滨工程大学,2019.07—2022.03在华南理工大学/广东省科学院新材料研究所从事博士后研究工作。目前以第一作者/通信作者身份发表SCI论文10篇,EI论文2篇,申请发明专利20余件,授权发明专利10余件,主持编写著作2部,获省部级科技奖励1项。主要研究领域为激光与增材制造。lubingwen@gdinm.com   
作者简介:  董颖辉,2020年9月于中北大学获得工学学士学位。现为武汉科技大学机械自动化学院硕士研究生,在蔡召兵副教授的指导下开展研究工作。目前主要从事陶瓷颗粒增强双相高熵合金涂层的制备及摩擦学性能研究。
引用本文:    
董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
DONG Yinghui, CHEN Feihuan, CAI Zhaobing, LIN Guangpei, LU Bingwen,
ZHANG Po, GU Le. Fretting Wear Properties of Laser-cladded MoNbTaVW Refractory High-entropy Alloy Coatings. Materials Reports, 2024, 38(7): 22100174-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22100174  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22100174
1 Wang Z, Cai Z B, Chen F H, et al. Materials Reports, 2023, 37(18), 22050049 (in Chinese).
王整, 蔡召兵, 陈飞寰, 等. 材料导报, 2023, 37(18), 22050049.
2 Qi Y F, Ren X Q, Zhou J Y, et al. Rare Metal Materials and Engineering, 2022, 51(2), 735 (in Chinese).
齐艳飞, 任喜强, 周景一, 等. 稀有金属材料与工程, 2022, 51(2), 735.
3 Wu Y X, Kong L C, Chen Y X, et al. Applied Surface Science, 2023, 613, 155997.
4 Guan H T, Chai L J, Wu J Y, et al. Intermetallics, 2022, 143, 107498.
5 Xiang K, Chai L J, Zhang C Q, et al. Optics and Laser Technology, 2022, 145, 107518.
6 Zhao Y, Wu M F, Jiang P C, et al. Journal of Materials Research and Technology, 2022, 20, 1908.
7 Han J S, Wu Y Z, Meng J H, et al. Rare Metal Materials and Engineering, 2019, 48(6), 2021 (in Chinese).
韩杰胜, 吴有智, 孟军虎, 等. 稀有金属材料与工程, 2019, 48(6), 2021.
8 Chen L, Yang Z W, Lu L K, et al. International Journal of Refractory Metals and Hard Materials, 2022, 110, 106027.
9 Gu P F, Qi T B, Chen L, et al. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105834.
10 Wang G, Li X M, Lu C B, et al. Chinese Journal of Materials Research, 2021, 35(8), 562 (in Chinese).
王根, 李新民, 卢彩彬, 等. 材料研究学报, 2021, 35(8), 562.
11 Cai Z B. Preparation and properties of NiCo(CrTiV, FeAlCu) high-entropy alloys and coatings. Ph. D. Thesis, Harbin Engineering University, China, 2018 (in Chinese).
蔡召兵. NiCo(CrTiV, FeAlCu)系高熵合金及涂层的制备与性能研究. 博士学位论文, 哈尔滨工程大学, 2018.
12 Gao X J, Guo N N, Zhu G M, et al. Surface Technology, 2019, 48(6), 107 (in Chinese).
高绪杰, 郭娜娜, 朱光明, 等. 表面技术, 2019, 48(6), 107.
13 Zhang J C, Shi S H, Gong Y Q, et al. Surface Technology, 2020, 49(10), 1 (in Chinese).
张津超, 石世宏, 龚燕琪, 等. 表面技术, 2020, 49(10), 1.
14 Cao J Z, Chen Y X, Chen K W, et al. Surface Technology, 2022, 51(6), 76 (in Chinese).
曹嘉兆, 陈永雄, 陈珂玮, 等. 表面技术, 2022, 51(6), 76.
15 Chai LJ, Wang C, Xiang K, et al. Surface & Coatings Technology, 2020, 402, 126503.
16 Guan H T, Chai L J, Wang Y Y, et al. Applied Surface Science, 2021, 549, 149338.
17 Lou L Y, Liu K C, Jia Y J, et al. Surface & Coatings Technology, 2022, 447, 128873.
18 Huang Y M, Wang Z Y, Xu Z Z, et al. Materials Letters, 2021, 285, 129004.
19 Wang K M, Shen H M, Wang Y X, et al. Journal of Chongqing University of Technology(Natural Science), 2024, 38(2), 117(in Chinese).
王凯模, 沈火明, 王宇星, 等. 重庆理工大学学报(自然科学), 2024, 38(2), 117.
20 Ma Q, Lu W E, Zhang Y M, et al. Materials Letters, 2022, 324, 132667.
21 Zhang P, Zeng L C, Mi X, et al. Wear, 2021, 474, 203760.
22 Yang Y L, Wang C L, Gesang Y Z, et al. Tribology International, 2021, 154, 106721.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[3] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[4] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[5] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[6] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[7] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[8] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[9] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[10] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[11] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[12] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[13] 常杜娟, 邓莉萍, 罗军明. 球磨工艺和合金元素Al对机械合金化制备NbVMoTa高熵合金粉末的影响[J]. 材料导报, 2023, 37(10): 21110231-5.
[14] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[15] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed