Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070290-6    https://doi.org/10.11896/cldb.22070290
  无机非金属及其复合材料 |
低真空环境对硬化水泥浆体力学性能的影响
常洪雷1, 王晓龙1, 郭政坤1, 冯攀2, 李少伟3, 刘健1,*
1 山东大学齐鲁交通学院,济南 250002
2 东南大学材料科学与工程学院,南京 211189
3 中国航天科工集团磁悬浮与电磁推进技术总体部,北京 100143
Effect of Low Vacuum Environment on the Mechanical Properties of Hardened Cement Paste
CHANG Honglei1, WANG Xiaolong1, GUO Zhengkun1, FENG Pan2, LI Shaowei3, LIU Jian1,*
1 School of Qilu Transportation, Shandong University, Jinan 250002, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 Institute of Magnetic Levitation and Electromagnetic Propulsion, China Aerospace Science and Industry Corporation Limited, Beijing 100143, China
下载:  全 文 ( PDF ) ( 6155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究低真空环境对硬化水泥浆体力学性能的影响,对低真空和室内大气环境下暴露的成熟水泥净浆试件(82 d和128 d龄期)进行了力学性能测试,并借助X射线衍射仪(XRD)和压汞仪(MIP)对水泥浆体的物相组成和孔结构进行了表征。结果表明:短期低真空暴露会促进成熟试件抗压强度的提升,但长期低真空暴露对试件强度的维持和发展是不利的。低真空环境基本不会改变硬化水泥浆体的物相种类,且低真空暴露后成熟试件的C-S-H凝胶含量与强度之间不存在明显的相关性。此外,与室内大气环境相比,成熟试件在低真空暴露28 d后最可几孔径和总孔隙率明显较小,而在低真空暴露168 d后最可几孔径和总孔隙率较大,这与成熟试件的强度发展规律具有良好的对应关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常洪雷
王晓龙
郭政坤
冯攀
李少伟
刘健
关键词:  水泥净浆  低真空环境  力学性能  物相组成  孔结构    
Abstract: To explore the mechanical properties of hardened cement paste under low vacuum, the mechanical properties of mature specimens (82 d and 128 d) exposed to low vacuum and indoor atmosphere were tested, the phase composition and pore structure were also investigated through X-ray diffraction (XRD) and Mercury intrusion porosimetry (MIP). The results show that short-term low vacuum exposure can improve the compressive strength of the mature specimens, but long-term low vacuum exposure is detrimental to the maintenance and development of specimen strength. Moreover, the low-vacuum environment basically does not change the phase type of hardened cement paste, and there is no obvious correlation between the C-S-H gel content and the strength. Besides, compared with the indoor atmospheric condition, the most probable pore size and total porosity of the mature specimens are obviously smaller after 28 days of low vacuum exposure, but larger after 168 days of low vacuum exposure, which has a good corresponding relationship with the strength development law.
Key words:  cement paste    low vacuum environment    mechanical property    phase composition    pore structure
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(52178226)
通讯作者:  *刘健,山东大学教授、博士研究生导师。主要从事交通基础设施智能检测,岩土结构计算分析、安全评估与监控等方面的研究。主持国家及省部级项目6项,重大工程委托项目6项;荣获省部级科技进步奖2项,山东省教学成果奖2项;发表学术论文30余篇,其中SCI及EI收录20余篇,以第一完成人授权专利12项。lj75@sdu.edu.cn   
作者简介:  常洪雷,博士毕业于东南大学,现为山东大学副教授,未来学者,博士研究生导师。主要从事高性能水泥基材料制备、自修复材料设计、混凝土耐久性及劣化机理、低真空环境材料性能研究。出版专著2部,发表学术论文50余篇,其中以第一作者或通信作者被土木工程材料领域顶级期刊Cement and Concrete Research、Cement and Concrete Composites等SCI收录20余篇,EI收录10余篇,授权专利7项。
引用本文:    
常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
CHANG Honglei, WANG Xiaolong, GUO Zhengkun, FENG Pan, LI Shaowei, LIU Jian. Effect of Low Vacuum Environment on the Mechanical Properties of Hardened Cement Paste. Materials Reports, 2024, 38(4): 22070290-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070290  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22070290
1 Robert H G. U. S. patent application, US59484545A, 1950.
2 Janzen R. Procedia Engineering, 2017, 199, 8.
3 Zhong S, Qian B S, Yang M Z, et al. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215, 104681.
4 Sui Y, Niu J Q, Ricco P, et al. International Journal of Heat and Fluid Flow, 2021, 88, 108752.
5 Wang C. Aerodynamic characteristics analysis and shape optimization design of ultra-high speed train with vacuum pipeline. Master’s Thesis, Dalian Jiaotong University, China, 2020(in Chinese).
王超. 真空管道超高速飞行列车气动特性分析与外形优化设计. 硕士学位论文, 大连交通大学, 2020.
6 Kanamori H. Lunar Concrete, 1991, 125, 57.
7 Feldman R F, Ramachandran V S. Cement and Concrete Research, 1971, 1(6), 607.
8 Horiguchi T, Saeki N, Yoneda T, et al. In:6th International Conference and Exposition on Engineering, Construction and Operations in Space. Albuquerque, 1998, pp.571.
9 Ge X. The research on effect of plateau climatic conditions on concrete performance and cracking mechanism. Ph. D. Thesis, Harbin Institute of Technology,China, 2019(in Chinese).
葛昕. 高原气候条件对混凝土性能及开裂机制影响的研究. 博士学位论文, 哈尔滨工业大学, 2019.
10 Zhang A, Yang W, Ge Y, et al. Construction and Building Materials, 2020, 249(4), 118787.
11 Grugel R N, Toutanji H. Advances in Space Research, 2008, 41(1), 103.
12 Wang K T, Lemougna P N, Tang Q, et al. Gondwana Research, 2017, 44, 1.
13 Scrivener K, Füllmann T, Gallucci E, et al. Cement and Concrete Research, 2004, 34(9), 1541.
14 Whitfield P, Mitchell L. Journal of Materials Science, 2003, 38(21), 4415.
15 Walenta G, Füllmann T. Powder Diffraction, 2004, 19(1), 40.
16 Liu R, Jiang L, Xu J, et al. Construction and Building Materials, 2014, 56, 16.
17 Wei Y, Zheng X B, Guo W Q. Journal of Building Materials, 2016, 19(5), 902(in Chinese).
魏亚, 郑小波, 郭为强. 建筑材料学报, 2016, 19(5), 902.
18 Chen X, Liu X, Dong S H, et al. Journal of Xi’an University of Architecture and Technology(Natural Science Edition), 2021, 53(2), 202(in Chinese).
陈歆, 刘旭, 董淑慧, 等. 西安建筑科技大学学报(自然科学版), 2021, 53(2), 202.
19 Bakhshi M, Mobasher B, Zenouzi M. Journal of Engineering Mechanics, 2012, 138(11), 1372.
20 Khoei A R, Amini D, Mortazavi S M S. International Journal for Numerical Methods in Engineering, 2021, 122(16), 4378.
21 Shui Z H, Wei X S, Wang D M. Modern concrete science and technology, Science Press, China, 2014, pp.33(in Chinese).
水中和, 魏小胜, 王栋民. 现代混凝土科学技术, 科学出版社, 2014, pp.33.
22 Otsuki N, Yodsudjai W, Nishida T, et al. Magazine of Concrete Research, 2003, 55(5), 439.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed